
Grothendieck Katz Conjecture

Let
df

dz
= A(z)f

be a linear ordinary differential equation, where A(z) is an n × n-matrix with entries
in Q(z). Then the solutions form an n-dimensional C-vector space, if the differential
equation defines an integrable connection

∇(f) = df −A(z)dz ∗ f.

The solutions are holomorphic functions and we ask ourselves: When are all solutions of
the differential equation even algebraic functions?

The Grothendieck Katz conjecture proposes: It has a full set of algebraic solutions
if and only if the reduced equation modulo p has a full set of solutions for almost all p.

The Grothendieck Katz conjecture is formulated in a greater generality. We want to
make sense of a flat connection having a full set of algebraic solutions. Let S be a smooth
connected C-scheme and (M,∇), where M is a locally free sheaf of finite rank r and
∇ an integrable connection on M . Then we say that (M,∇) has a full set of algebraic
solutions

⇔ ∃ finite field extention K/L, where L is the function field of S, such that (M,∇)⊗K
is trivial (i.e. M ⊗K is spanned by horizontal sections, M ⊗K ∼= (M ⊗K)∇ ⊗K

⇔ ∃ a finite cover u′ : U ′ → S such that u′∗(M,∇) ∼= (Or
U ′ , d) the trivial connection

⇔ ∃ a finite étale cover u : U → S such that u∗(M,∇) ∼= (Or
U , d) the trivial connection

If (M,∇) on S has regular singularities, this is equivalent to saying that the monodromy
representation of (M,∇) is finite.

Characteristic p

Let T be some base scheme of positive characteristic and let S → T be a smooth T -scheme.

Let MIC(S/T ) be the category of pairs (E ,∇) such that E is a quasi-coherent OS

module and ∇ : E → Ω1
S/T ⊗OS

E an integrable connection, meaning that

∇(ge) = g∇(e) + dg ⊗ e

for local sections g ∈ OS , e ∈ E and ∇2 = 0, where

∇ : Ωi
S/T ⊗OS

E → Ωi+1
S/T ⊗OS

E

ω ⊗ e 7→ dw ⊗ e+ (−1)iω ∧∇(e).

What is now the correct analogue in positive characteristic of a differential equation
having a full set of solutions? In characteristic zero, we have that E∇ is a sheaf of finite
dimensional C-vector spaces. But in positive characteristic, this is not the case. Consider
for example the connection d : k[z] → k[z]. Then the kernel is k[zp], which is not a finit
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dimensional k-vector space. But it is obviously a finitely generated k[zp]-module. In this
case, the analogue of C here is k[zp]. In general, we need the Frobenius twist and we will
replace C with OS(p) .

Definition 1. Let f : S → T be a smooth morphism of schemes of positive characteristic
p. Let

Fabs : T → T =

{
id : |T | → |T |
(−)p : OT → OT

be the absolute Frobenius morphism. Then the relative Frobenius morphism F : S → S(p)

is defined the following:

S

S(p) = S ×T,Fabs
T S

T T

Fabs
F

Fabs

For a connection in positive characteristic (E ,∇), the horizontal sections E∇ are a
quasi coherent sheaf on S(p). This is because the Frobenius induces an isomorphism

F ∗ : OS(p) → F∗ ker(d : OS → Ω1
X/S)

We say that (E ,∇) has a full set of solutions, if F ∗E∇ = E∇ ⊗O
S(p)

OS
∼= E .

We want to reformulate the property of having a full set of solutions, using the p-
curvature.

The p-curvature

Note that for any D ∈ Der(S/T ) = DerOT
(OS ,OS) = HomOS

(Ω1
S/T ,OS) a local section,

we get a map ∇(D) ∈ EndT (E)

∇(D) : E ∇−→ Ω1
S/T ⊗OS

E D⊗1−−−→ OS ⊗OS
E ∼= E ,

so ∇ induces a map
∇ : Der(S/T ) → EndT (E).

Now on both sides we have a p-structure: if D is a derivation, we have the Leibniz rule

Dn(gh) =

n∑
i=0

(
n

i

)
Di(g)Dn−i(h),

so since we are in characteristic p, for n = p we get

Dp(gh) = Dp(g)h+ gDp(h),

which shows that Dp is again a derivation. We obtain on Der(S/T ) the p-structure

(−)p : Der(S/T ) → Der(S/T ), D 7→ Dp.
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Also on EndT (E), we have a p-structure of just iterating an endomorphism p times,

(−)p : EndT (E) → EndT (E), G 7→ Gp.

This raises the question: (When) is ∇ compatible with the p-structures, i.e., ∇(Dp) =
(∇(D))p?

Definition 2. For (E ,∇) ∈MIC(S/T ), we define the p-curvature

ψ : Der(S/T ) → EndT (E)
D 7→ ψ(D) := (∇(D))p −∇(Dp)

Remark 3. The p-curvature is even a map ψ : Der(S/T ) → EndS(E), i.e., ψ(D) is
OS-linear: Let g ∈ Os and e ∈ E be local sections. Since ∇ is a connection, we get the
generalized Leibniz rule

(∇(D))n(ge) =
n∑

i=0

(
n

i

)
Di(g)(∇(g))n−i(e),

and therefore
(∇(D))p(ge) = Dp(g)e+ g(∇(D))p(e).

But also because ∇ is a connection, we have

∇(Dp)(ge) = Dp(g)e+ g∇(Dp)(e),

so by substracting these two equalities, we get

ψ(D)(ge) = gψ(D)(e).

The p-curvature gives us now a criterion to check, if a connections has a full set of
solutions.

Theorem 4 (Cartier). Let f : S → T be a smooth morphism in positive characteristic
p. There is an equivalence of categories between the category of quasi coherent sheaves
on S(p) and the full subcategory of MIC(S/T )a, consisting of objects (E ,∇), whoose
p-curvature is zero.

Proof. We have the following functors: Let F be a quasi coherent sheaf on S(p). Then on
F ∗F = F−1F ⊗F−1O

S(p)
OS , we have the flat connection ∇can, given by

∇can : F ∗F → F ∗F ⊗OS
Ω1
S/T

f ⊗ s 7→ (f ⊗ 1)⊗ ds

where s ∈ Os and f ∈ F−1F local sections. This connection satisfies (F ∗F)∇can ∼= F and
has vanishing p-curvature. This defines the functor F 7→ (F ∗F ,∇can).
In the other direction, we note that for (E ,∇) of p-curvature zero, E∇ is a quasi

coherent sheaf on S(p). This is because the Frobenius induces an isomorphism

F ∗ : OS(p) → F∗ ker(d : OS → Ω1
X/S)

The functor in the other direction is (E ,∇) 7→ E∇.
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The only thing left to show is that for a connection (E ,∇) with p-curvature zero, the
natural map

F ∗E∇ → E

For the precise proof, we only consider the case T = Spec(k) and S = Spec(k[z]). Let ∂z
given by f 7→ f ′ be the derivative with respect to z. Then consider the map

P =

p−1∑
j=0

(−z)j

j!
∇(∂z),

which is a k[zp]-linear endomorphism of k[z]. The image of P are flat sections. For this
note that for ∇P = 0 it suffices ∇(∂z)P = 0. We check for e ∈ E

∇(∂z)(Pe) = ∇(∂z)(

p−1∑
j=0

(−z)j

j!
∇(∂z)e) =

p−1∑
j=1

1

j!
∇(∂z)((−z)j∇(∂z)(e))

=

p−1∑
j=0

1

j!
(−j(−z)j−1∇(∂z)(e) + (−z)j∇(∂z)

j+1(e))

=

p−1∑
j=1

(−(−z)j−1

(j − 1)!
∇(∂z)

j(e) + (
(−z)j

j!
∇(∂z)

j+1(e)) +∇(∂z)(e) = ∇(∂z)
p(e) = 0

because of the vanishing p-curvature. Therefore, we already get

P : E → E∇.

Also, we want to show now that P produces enough horizontal sections. For this, one
checks (similar as before) that

T (e) :=

p−1∑
k=0

zk

k!
P (∇(∂z)

k(e)) = e,

so T defines an inverse.
In the general case, one uses that since the question is local on S, we can assume that

S is affine and étale over Ar
T , so Ω1

S/T is freely generated by sections {ds1, ..., dsr}. Then

P :=
∑
ω

r∏
i=1

(
(−si)ωi

ωi!

r∏
i=1

∇(∂si)
ωi

)
,

where the sum is taken over all r-tuples (ω1, ..., ωr) of integers such that 0 ≤ ωi ≤ p− 1.
Then,

T (e) :=
∑
ω

r∏
i=1

sωi
i

ωi!
P

r∏
i=1

∇(∂si)
ωi(e)

and one can check that this defines an inverse.

This shows, that an algebraic differential equation in positive characteristic has a full
set of solutions, if and only if the p-curvature vanishes.
We also have the following properties:
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Proposition 5. Let g ∈ OS , D,D
′ ∈ Der(S/T ) local sections.

(1) The map
ψ : Der(S/T ) → EndS(E)

is p-linear, i.e., additive and ψ(gD) = gpψ(D),

(2) ∇(D),∇(Dp), ψ(D) mutually commute,

(3) ψ(D) and ψ(D′) commute,

(4) ψ(D) and ∇(D′) commute.

Now we can state the Grothendieck Katz conjecture precisely.

The Grothendieck Katz conjecture

Let SC ba a smooth connected quasi-projective C-scheme and let (M,∇)C be an integrable
connection on SC. Then we can find a finitely generated Z-algebra R ⊂ C and a smooth
R-scheme S with an integrable connection (M,∇) on S, which induces (M,∇)C on UC.
For a maximal ideal p ⊂ R, R/p ∼= Fq is a finite field of characteristic p. So modulo

p, we get a connection (M/pM,∇) on Sp in positive characteristic. We say that SC has
p-curvature zero for almost all p, if the p-curvature of (M/pM,∇) vanishes for all but
finitely many p. This property does not depend on the choice of the spreading out.

Conjecture 6 (Grothendieck-Katz conjecture). (M,∇)C has a full set of algebraic
solutions if and only if it has p-curvature zero for almost all p.

The interesting part of of the conjecture is the
”
if“-part, because if (M,∇)C has a full

set of algebraic solutions, it becomes trivial after an étale covering. But the p-curvature
of a connection is zero if and only if the p-curvature of an étale covering is zero.
Theorem 13.0 of (Katz: Nilpotent connection and the monodromy theorem) implies

that if the p-curvature is zero for almost all p, then the connection (M,∇)C has only
regular singular points. Therefore, for it to have a full set of algebraic solutions, it suffices
that the monodromy group is finite.

Conjecture 7. Suppose that the p-curvature is zero for almost all p. Then (M,∇)C has
a finite monodromy group.

Already the rank one case is interesting: Let (OS ,∇) be an integrable rank one equation,
given by ∇(f) = df + f∇(1) with a closed form ω := ∇(1). If we reduce this equation
modulo a maximal ideal in R, then it has a solution, if and only if it is logarithmic, i.e.,
ω = df/f for some unit f . On the other hand, the equation admits a solution on a finite
étale covering of SC, if and only if nω is logarithmic for some n ≥ 1.

(If nω = dg/g, then f = g−1/n is an algebraic solution. On the other hand if ω = df/f
for an algebraic function of degree n (u : U → SC finite étale of degree n and f ∈ OU

solution), then for g := Norm(1/f), we have that nω = trace(ω) = trace(−df/f) = dg/g,

where trace : Ω1
U/C → Ω1

SC/C, which satisfies trace(dff ) =
dNorm(f)
Norm(f) for any f ∈ O×

U ).
So a special case of the Grothendieck Katz conjecture is the following

Conjecture 8. Let ω ∈ H0(S,Ω1
S/R) be a closed form. Then ω is logarithmic modulo

p for almost all maximal ideals in p ⊂ R if and only if a multiple nω for n ≥ 1 is
logarithmic on SC
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The question of Grothendieck first arised from the following question: Let

d

dz
f = A(z)f

be a system of linear differential equations, where A(z) ∈ Matn×n(K(z)), where K is a
number field. For almost all prime ideals p of the ring of integers of K is makes sense to
reduce this equation modulo p, and one gets a differential equation over Fq(z). Then the
Grothendieck Katz conjecture sais:

Conjecture 9. The differential equavion above has a full set of algebraic solutions, of
and only if the reduced equation modulo p has a full set of solutions (i.e., n solutions in
Fq(z)

n, which are linearly independent over Fq(z)).

Reduction to P1 \ {0, 1,∞}

The Grothendieck Katz conjecture is equivalent to the following special case:
Let SC = P1 \ {0, 1,∞}, M = On

SC
and consider the differential equation

∇(f) = df − (
1

t
B +

1

t− 1
C)fdz,

where B,C ∈ Matr×r(Q). We can spread this out to the ring of integers R of Q(bij , cij).
Then for almost all maximal ideals p ⊂ R, we can reduce the equation modulo p.

We want to show that the Grothendieck Katz conjecture is equivalent to the Gro-
thendieck Katz conjecture for this specific situation. We sketch, how one can reduce the
general conjecture to this case. So let (M,∇)C be an integrable connection on a smooth
connected quasi-projective C-scheme SC and consider a spreading out (M,∇) on S over
R. Theorem 13.0 in (Katz: Nilpotent connections and the monodromy theorem) implies
the following:

Theorem 10. If the (M,∇)C has vanishing p-curvature for almost all p, then (M,∇)C
is regular singular and has finite monodromies at infinity.

Claim 11. The Grothendieck Katz conjecture is equivalent to the Grothendieck Katz
conjecture, where SC is a smooth projective curve.

Proof. Since SC has only regular singularities, we can choose a compactification SC of
SC, which is projective, and such that the complement D = SC \ SC is a simple normal
crossing divisor. The connection (M,∇)C extends to a locally free sheaf of finite rank M
on SC and a map

∇ :M → Ω1
SC/C

(logD)⊗M,

extending ∇ and also satisfying a Leibniz rule. Now since SC has only finite monodromy
at infinity, we can reach after a finite cover u′ : U ′ → SC that we get a connection

∇ :MU ′ → Ω1
U ′/C ⊗MU ′ ,

which means that we can remove the log-poles.
(For example, consider SC = Spec(C[z, 1z ]), M = C[z, 1z ] and the differential equation

∇(f) = df − bf
dz

z
,
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with b ∈ Q. Finite monodromy at infinity means that the image of all loops around a
point at infinity under the monodromy representation is finite. In this case, this means
(see intruduction talk) that b ∈ Q. This is because a the loops around zero induce the
representation

Z ∋ l 7→ e2πibl,

which is finite, if and only if b ∈ Q. But also note, what a base change of the basis of
OSC

does: Let m,m′ be two elements, generating OSC
. Let m be the standard basis, in

which the extention of the connection is given by

∇ : OSC
→ Ω1

SC/C
(log(z))⊗OSC

,

m 7→ b
dz

z
⊗m.

By replacing SC by a finite extention, we can assume that z−b ∈ O×
SC

and we write

m′ = z−bm. Then we have

∇(z−bm) = d(z−b)⊗m+ z−b(b
dz

z
⊗m) = zbd(z−b)⊗m′ + (b

dz

z
)⊗m′

= (zb · (−bz−b−1dz))⊗m′ + (b
dz

z
)⊗m′ = 0,

so after the base change to m′, the log pole vanishes. This showes that after a finite
extention we really have a connection. end of example)
Since for having a full set of algebraic solutions it suffices that there is a trivializing

finite cover (instead of a finite étale cover), we can reduce to the case that SC is projective.
Now we can use the Lefschetz hyperplane theorem, which tells us that there is a smooth

projective connected curve C ⊂ SC, such that the induced map

π1(C
an) → π1((SC)

an)

is surjective. This reduces the Grothendieck Katz conjecture to the case of a smooth
projective connected curve.

Claim 12. The Grothendieck Katz conjecture is equivalent to the Grothendieck Katz
conjecture for smooth projective connected curves defined over a number field.

Proof. For (M,∇)C on SC, we get the spreading out (M,∇) on S over R. If we consider
the base change RQ = R⊗Z Q, then we get a connection (M,∇)Q on SQ. By a Corollaire
7.1.3 of (Yves Adreé: Sur la conjecture des p-courbures de Grothendieck–Katz et un
problème de Dwork), the generic fiber satisfies the Grothendieck Katz conjecture if and
only if all fibers of closed point of a dense open set of Spec(RQ) satisfy the Grothendieck
Katz conjecture.

Claim 13. The Grothendieck Katz conjecture is equivalent to the situation described
above.

Proof. Let S be defined over a numberfield. Since π1(U) ↠ π1(S) for a nonempty Zariski
open, we can assume that SC is an affine curve. Then, by a theorem of Belyi, there is a
finite étale cover π : S → P1

C \ {0, 1,∞} (since we already reduced to the case of a curve
over a number field), so we are reduced to the case SC = P1 \ {0, 1,∞}.
Then one can further reduce it to the specific equation given above (see for example

Remarque 7.1.4 in Yves André: Sur la conjecture des p-courbures de Grothendieck–Katz
et un problème de Dwork).
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Example

Consider the differential equation

∇(f) = df − bf
dz

z
= 0

on C[z, 1z ] from above, where b ∈ Q. We already saw in the introduction talk that there
is an algebraic solution if and only if b ∈ Q.

On the other hand, we can reduce this equation modulo almost all prime ideals of Q(b)
(more specific: we can reduce it for all primes p in Q(b), where b is integral with respect
to the induced non-Archimedian norm). Since we only have one variable, the p-curvature
ψp is zero, if and only if ψp(∂z) = 0, where ∂z(f) = f ′, this corresponds to the morphism
ϕ : Ω1

C[z, 1
z
]/C → C[z, 1z ], dz 7→ 1. Since ∂pz = 0 this is equivalent to

∇(∂z)
p = 0.

For f ∈ C[z, 1z ],

∇(∂z)(f) = ϕ(∇(f)) = ϕ(df − bf
dz

z
) = f ′ − b

z
f = (

d

dz
− b

z
)f,

therefore for the p-curvature to vanish, it is equivalent, that

0 = (
d

dz
− b

z
)pzn = (n− b)(n− b− 1)...(n− b− p+ 1)zn−p ≡ 0 mod p

for almost all maximal ideals p of Q(b). We see that the p-curvature is zero for almost
all p, if and only of for almost all p there is an integer r ∈ Z such that b ≡ r mod p. We
want to show that this is equivalent to b ∈ Q.

If b ∈ Q, then this is definitely fulfilled: write b = m
k with (m, k) = 1. Then for any p

prime, which does not divide k, b defines an element in Zp/pZp = Fp. So b ≡ r mod p for
some r ∈ Z.
On the other hand assume that for almost all p there is an integer r ∈ Z such that

b ≡ r mod p. By replacing b by some multiple, we can assume that it is integral over Z.
By the Chebotarev density theorem, it suffices to show that almost all p split completely
in Q(b). To show this, let L be the Galois hull of Q(b)/Q. Then it suffices to show that
almost all p split completely in L. Let b1, ..., bn be the Galois conjugates of b. Then
L = Q(b1, ..., bn). Let B = OL and Z[b1, ..., bn]. Since Frac(C) = L is Galois over Q, the
map Spec(C) → Spec(Z) is étale over a dense open subset U ⊂ Spec(Z). So for any
p ∈ U , C(p) is étale over Z(p). Therefore C(p) is regular and therefore integrally closed.
But since B is integrally closed, this implies C(p) = B(p) and B/pB = C/pC. Also we
have for p ∈ U the decomposition in primes of B,

pB = q1, ..., qm,

where the qi are all pairwise different and they all have the same residue field degree

f := [B/qi : Fp].

This implies that

C/pC =

m∏
i=1

Fpf
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To show that p splits completely in L, we have to show that f = 1. For this, it suffices
to show that there is a nontrivial ring homomorphism C/pC → Fp. By assumption, we
know that b ≡ r mod p, so it lies in the image of Z in C/pC. So we define the morphism
to be

C/pC → Fp, bi 7→ r mod p.

Note also that b /∈ pB for all but finitely many p, because we know that the ideal in pB
has a finite decomposition into prime ideals. So the defined map is not zero for all but
finitely many prime numbers p. This shows that almost all p split completely in L and
we conclude that b ∈ Q.

We see that this specific differential equation satisfies the Grothendieck Katz conjecture.

Another connection, which satisfies the Grothendieck Katz conjecture is the Gauß-Manin
connection.

Theorem 14. The Gauß-Manin connection satisfies the Grothendieck-Katz conjecture.
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