Grothendieck Katz Conjecture

Let i
dz = A(2)f

be a linear ordinary differential equation, where A(z) is an n X n-matrix with entries
in Q(z). Then the solutions form an n-dimensional C-vector space, if the differential
equation defines an integrable connection

V(f) =df — A(z)dz* f.

The solutions are holomorphic functions and we ask ourselves: When are all solutions of
the differential equation even algebraic functions?

The Grothendieck Katz conjecture proposes: It has a full set of algebraic solutions
if and only if the reduced equation modulo p has a full set of solutions for almost all p.

The Grothendieck Katz conjecture is formulated in a greater generality. We want to
make sense of a flat connection having a full set of algebraic solutions. Let S be a smooth
connected C-scheme and (M, V), where M is a locally free sheaf of finite rank r and
V an integrable connection on M. Then we say that (M, V) has a full set of algebraic
solutions

< 3 finite field extention K /L, where L is the function field of S, such that (M, V)® K
is trivial (i.e. M ® K is spanned by horizontal sections, M @ K = (M ® K)V @ K

< 3 a finite cover v’ : U’ — S such that u* (M, V) = (O], d) the trivial connection
& Jafinite étale cover u : U — S such that u* (M, V) = (Of;, d) the trivial connection

If (M, V) on S has regular singularities, this is equivalent to saying that the monodromy
representation of (M, V) is finite.

Characteristic p

Let T be some base scheme of positive characteristic and let S — 1" be a smooth T-scheme.

Let MIC(S/T) be the category of pairs (£,V) such that £ is a quasi-coherent Og
module and V : £ — Q}g 7 R0 £ an integrable connection, meaning that

V(ge) =gV(e)+dg®e
for local sections g € Og, e € £ and V2 = 0, where
Vi Qg ®0s £ = Oy ©os €
wer dw®e+ (—1)wAVe).

What is now the correct analogue in positive characteristic of a differential equation
having a full set of solutions? In characteristic zero, we have that EV is a sheaf of finite
dimensional C-vector spaces. But in positive characteristic, this is not the case. Consider
for example the connection d : k[z] — k[z]. Then the kernel is k[zP], which is not a finit



dimensional k-vector space. But it is obviously a finitely generated k[zP]-module. In this
case, the analogue of C here is k[zP]. In general, we need the Frobenius twist and we will
replace C with Og().

Definition 1. Let f : S — T be a smooth morphism of schemes of positive characteristic
p. Let
id:|T| — |T

Fops : T =T =
s {(—)p:OT%OT

be the absolute Frobenius morphism. Then the relative Frobenius morphism F : S — S(®)
is defined the following;:

(p):SXT,FabST S
T Fabs T

For a connection in positive characteristic (£, V), the horizontal sections £V are a
quasi coherent sheaf on S®). This is because the Frobenius induces an isomorphism

F*: Oy — Fuker(d: Og — QQS)

We say that (£,V) has a full set of solutions, if F*EY = &V ®O, () Og = €.

We want to reformulate the property of having a full set of solutions, using the p-
curvature.

The p-curvature
Note that for any D € Der(S/T) = Derop,(Og,Og) = Hom@S(Q}g/T, Og) a local section,
we get a map V(D) € Endr(€)

V(D) : € 5 QL ®os € 225 05 @0y £ 2 E,

so V induces a map
V : Der(S/T) — Endr(E).
Now on both sides we have a p-structure: if D is a derivation, we have the Leibniz rule

n
n . .
DTL — (2 n—
=3 (1) D0
=0
so since we are in characteristic p, for n = p we get
DP(gh) = D*(g)h + gDP(h),
which shows that DP is again a derivation. We obtain on Der(S/T') the p-structure

(—)P : Der(S/T) — Der(S/T), D w— DP.



Also on Endr(E), we have a p-structure of just iterating an endomorphism p times,
(=) :Endr(E) = Endr(£), Gw— GP.
This raises the question: (When) is V compatible with the p-structures, i.e., V(DP) =
(V(D))r?
Definition 2. For (£,V) € MIC(S/T), we define the p-curvature
Y : Der(S/T) — Endr(E)
D — (D) := (V(D))" — V(D)
Remark 3. The p-curvature is even a map ¢ : Der(S/T) — Endg(E), i.e., ¥(D) is

Og-linear: Let g € O, and e € £ be local sections. Since V is a connection, we get the
generalized Leibniz rule

n

@00 =3 (7 DT )

1=0

and therefore
(V(D))P(ge) = DP(g)e + g(V(D))"(e).

But also because V is a connection, we have
V(D?)(ge) = D*(g)e + gV (D")(e),

so by substracting these two equalities, we get

(D) (ge) = gi(D)(e).

The p-curvature gives us now a criterion to check, if a connections has a full set of
solutions.

Theorem 4 (Cartier). Let f : S — T be a smooth morphism in positive characteristic
p. There is an equivalence of categories between the category of quasi coherent sheaves
on S®) and the full subcategory of MIC(S/T)a, consisting of objects (£,V), whoose
p-curvature is zero.

Proof. We have the following functors: Let F be a quasi coherent sheaf on S). Then on
F*F=F1F ®F7105(p) Og, we have the flat connection Vi a,, given by
Vean : F*F = F*F ®0g Q1
fos—(fel)®ds

where s € O, and f € F~1F local sections. This connection satisfies (F*F)Vean 2 F and
has vanishing p-curvature. This defines the functor F +— (F*F, Vcan).

In the other direction, we note that for (£,V) of p-curvature zero, EV is a quasi
coherent sheaf on S®). This is because the Frobenius induces an isomorphism

F*: Ogw) — Feker(d : Og = Q% )

The functor in the other direction is (£,V) ~— £V.



The only thing left to show is that for a connection (£, V) with p-curvature zero, the
natural map

F*eY 5 €

For the precise proof, we only consider the case T' = Spec(k) and S = Spec(k[z]). Let 0,
given by f +— f’ be the derivative with respect to z. Then consider the map

which is a k[zP]-linear endomorphism of k[z]. The image of P are flat sections. For this
note that for VP = 0 it suffices V(0,)P = 0. We check for e € £

p—1 j p—1 ‘
V(0:)(Pe) = VO (0.0 = Y 19021V @.))
j=0 j=1 "
p—1
=Y LTIV () + (—2) V(0. (e))
i=0 7’
p—1

Lyl . Y .
=3 (- v + (V@) + (0.0 = Ve =0
» | |

<

because of the vanishing p-curvature. Therefore, we already get
P:&—¢&V.

Also, we want to show now that P produces enough horizontal sections. For this, one
checks (similar as before) that

so T defines an inverse.
In the general case, one uses that since the question is local on S, we can assume that
S is affine and étale over A7, so Q}g /T is freely generated by sections {ds1, ..., ds,}. Then

PSS Tve.r ),

w =1

where the sum is taken over all r-tuples (w1, ...,w;) of integers such that 0 < w; < p—1.
Then,

T Wi T
S, )
UCEDMIEEd IRCRNE
w =1 i=1
and one can check that this defines an inverse. O

This shows, that an algebraic differential equation in positive characteristic has a full
set of solutions, if and only if the p-curvature vanishes.
We also have the following properties:



Proposition 5. Let g € Og, D, D’ € Der(S/T) local sections.

(1) The map
Y : Der(S/T) — Endgs(E)

is p-linear, i.e., additive and 1(gD) = gP¥(D),
(2) V(D),V(DP), (D) mutually commute,
(3) (D) and (D') commute,
(4) (D) and V(D') commute.

Now we can state the Grothendieck Katz conjecture precisely.

The Grothendieck Katz conjecture

Let Sc ba a smooth connected quasi-projective C-scheme and let (M, V)¢ be an integrable
connection on Sc. Then we can find a finitely generated Z-algebra R C C and a smooth
R-scheme S with an integrable connection (M, V) on S, which induces (M, V)¢ on Ug.
For a maximal ideal p C R, R/p = F, is a finite field of characteristic p. So modulo
p, we get a connection (M/pM,V) on S, in positive characteristic. We say that S¢ has
p-curvature zero for almost all p, if the p-curvature of (M /pM,V) vanishes for all but
finitely many p. This property does not depend on the choice of the spreading out.

Conjecture 6 (Grothendieck-Katz conjecture). (M,V)c has a full set of algebraic
solutions if and only if it has p-curvature zero for almost all p.

The interesting part of of the conjecture is the ,if“-part, because if (M, V)¢ has a full
set of algebraic solutions, it becomes trivial after an étale covering. But the p-curvature
of a connection is zero if and only if the p-curvature of an étale covering is zero.

Theorem 13.0 of (Katz: Nilpotent connection and the monodromy theorem) implies
that if the p-curvature is zero for almost all p, then the connection (M, V)¢ has only
regular singular points. Therefore, for it to have a full set of algebraic solutions, it suffices
that the monodromy group is finite.

Conjecture 7. Suppose that the p-curvature is zero for almost all p. Then (M, V)¢ has
a finite monodromy group.

Already the rank one case is interesting: Let (Og, V) be an integrable rank one equation,
given by V(f) = df + fV(1) with a closed form w := V(1). If we reduce this equation
modulo a maximal ideal in R, then it has a solution, if and only if it is logarithmic, i.e.,
w = df /f for some unit f. On the other hand, the equation admits a solution on a finite
étale covering of Sg, if and only if nw is logarithmic for some n > 1.

(If nw = dg/g, then f = g~/ is an algebraic solution. On the other hand if w = df /. f
for an algebraic function of degree n (u : U — Sc finite étale of degree n and f € Oy
solution), then for g := Norm(1/f), we have that nw = trace(w) = trace(—df/f) = dg/g,
where trace : Q%]/(c — Q}%/C’ which satisfies trace(%) = C?Oﬁn(%) for any f € OF).
So a special case of the Grothendieck Katz conjecture is the following

Conjecture 8. Let w € HY(S, Q}S‘/R) be a closed form. Then w is logarithmic modulo
p for almost all mazimal ideals in p C R if and only if a multiple nw for n > 1 is
logarithmic on Sc



The question of Grothendieck first arised from the following question: Let

d
%f =A(2)f

be a system of linear differential equations, where A(z) € Mat,, (K (z)), where K is a
number field. For almost all prime ideals p of the ring of integers of K is makes sense to
reduce this equation modulo p, and one gets a differential equation over F,(z). Then the
Grothendieck Katz conjecture sais:

Conjecture 9. The differential equavion above has a full set of algebraic solutions, of
and only if the reduced equation modulo p has a full set of solutions (i.e., n solutions in
Fq(2)", which are linearly independent over Fq(2)).

Reduction to P!\ {0, 1, 00}

The Grothendieck Katz conjecture is equivalent to the following special case:
Let Sc = P!\ {0,1,00}, M = O, and consider the differential equation

V() =df ~ (GB+ —C)fdz,
t t—1
where B, C' € Mat,x,(Q). We can spread this out to the ring of integers R of Q(b;j, ¢;j).
Then for almost all maximal ideals p C R, we can reduce the equation modulo p.

We want to show that the Grothendieck Katz conjecture is equivalent to the Gro-
thendieck Katz conjecture for this specific situation. We sketch, how one can reduce the
general conjecture to this case. So let (M, V)¢ be an integrable connection on a smooth
connected quasi-projective C-scheme S¢ and consider a spreading out (M, V) on S over
R. Theorem 13.0 in (Katz: Nilpotent connections and the monodromy theorem) implies
the following:

Theorem 10. If the (M, V)c has vanishing p-curvature for almost all p, then (M, V)¢
1s reqular singular and has finite monodromies at infinity.

Claim 11. The Grothendieck Katz conjecture is equivalent to the Grothendieck Katz
conjecture, where Sc is a smooth projective curve.

Proof. Since Sc has only regular singularities, we can choose a compactification S¢ of
Sc, which is projective, and such that the complement D = S¢ \ Sc is a simple normal
crossing divisor. The connection (M, V)¢ extends to a locally free sheaf of finite rank M

on S¢ and a map

V:M-— QL

Sc/C (10gD) ® Ma

extending V and also satisfying a Leibniz rule. Now since Sc has only finite monodromy
at infinity, we can reach after a finite cover v’ : U’ — S¢ that we get a connection

V . MU/ — Q[lj//(c ®MU/,

which means that we can remove the log-poles.
(For example, consider S¢c = Spec(C|z, %}), M = Clz, %] and the differential equation

V() = df b



with b € Q. Finite monodromy at infinity means that the image of all loops around a
point at infinity under the monodromy representation is finite. In this case, this means
(see intruduction talk) that b € Q. This is because a the loops around zero induce the
representation

2mibl
731w ™",

which is finite, if and only if b € Q. But also note, what a base change of the basis of
O% does: Let m, m’ be two elements, generating (’)%. Let m be the standard basis, in
which the extention of the connection is given by

V:0g — Q}?C/C(log(z)) ® Oz,

dz
m—=b— ®@m.
z

By replacing Sc by a finite extention, we can assume that z7° € O;— and we write
C

m’ = z~bm. Then we have
</ .—b b b, Az b —b ' dz /
V(z7’m) =d(z7") @m + 2 (b7®m) =z2’d(z7")®@m —i—(b?)@m
= (2% (=bz7 " ld2)) @ m/ + (b%) ®@m' =0,
z

so after the base change to m’, the log pole vanishes. This showes that after a finite
extention we really have a connection. end of example)
Since for having a full set of algebraic solutions it suffices that there is a trivializing
finite cover (instead of a finite étale cover), we can reduce to the case that Sc is projective.
Now we can use the Lefschetz hyperplane theorem, which tells us that there is a smooth
projective connected curve C C Sc, such that the induced map

m(C") — m((Sc)™)

is surjective. This reduces the Grothendieck Katz conjecture to the case of a smooth
projective connected curve. ]

Claim 12. The Grothendieck Katz conjecture is equivalent to the Grothendieck Katz
conjecture for smooth projective connected curves defined over a number field.

Proof. For (M, V)¢ on Sc, we get the spreading out (M, V) on S over R. If we consider
the base change Ry = R ®z Q, then we get a connection (M, V)g on Sg. By a Corollaire
7.1.3 of (Yves Adreé: Sur la conjecture des p-courbures de Grothendieck-Katz et un
probleme de Dwork), the generic fiber satisfies the Grothendieck Katz conjecture if and
only if all fibers of closed point of a dense open set of Spec(Rg) satisfy the Grothendieck
Katz conjecture. O

Claim 13. The Grothendieck Katz conjecture is equivalent to the situation described
above.

Proof. Let S be defined over a numberfield. Since 71 (U) — m1(S) for a nonempty Zariski
open, we can assume that Sc is an affine curve. Then, by a theorem of Belyi, there is a
finite étale cover 7 : S — P&\ {0,1,00} (since we already reduced to the case of a curve
over a number field), so we are reduced to the case Sc = P!\ {0,1,00}.

Then one can further reduce it to the specific equation given above (see for example
Remarque 7.1.4 in Yves André: Sur la conjecture des p-courbures de Grothendieck—Katz
et un probleme de Dwork). O



Example

Consider the differential equation
dz
V(f):df—bf7:O

on Clz, %] from above, where b € Q. We already saw in the introduction talk that there
is an algebraic solution if and only if b € Q.

On the other hand, we can reduce this equation modulo almost all prime ideals of Q(b)
(more specific: we can reduce it for all primes p in Q(b), where b is integral with respect
to the induced non-Archimedian norm). Since we only have one variable, the p-curvature
1y is zero, if and only if ¢,(0;) = 0, where 0,(f) = f’, this corresponds to the morphism

o : Q(lc[z 1 Clz, %], dz — 1. Since 0% = 0 this is equivalent to
V(9,)P =0.
For f € Clz, 1],
dz b d b
3 = —b(df —bF = 2 (22
V(@:)() = V(1) = 6ldf — b5 ) = ' = 2 = (== .
therefore for the p-curvature to vanish, it is equivalent, that
d b _
0= (d—— Pt =mn—-b)n—b—1)..(n—-b—p+1)z2"P=0 modp
z oz

for almost all maximal ideals p of Q(b). We see that the p-curvature is zero for almost
all p, if and only of for almost all p there is an integer r € Z such that b = r mod p. We
want to show that this is equivalent to b € Q.

If b € Q, then this is definitely fulfilled: write b = 7* with (m, k) = 1. Then for any p
prime, which does not divide k, b defines an element in Z,/pZ, = F,,. So b = r mod p for
some r € Z.

On the other hand assume that for almost all p there is an integer r € Z such that
b =r mod p. By replacing b by some multiple, we can assume that it is integral over Z.
By the Chebotarev density theorem, it suffices to show that almost all p split completely
in Q(b). To show this, let L be the Galois hull of Q(b)/Q. Then it suffices to show that
almost all p split completely in L. Let b1, ...,b, be the Galois conjugates of b. Then
L =Q(by,...,b,). Let B =0y, and Zlby, ..., b,]. Since Frac(C) = L is Galois over Q, the
map Spec(C') — Spec(Z) is étale over a dense open subset U C Spec(Z). So for any
p € U, Cy,) is étale over Z,). Therefore C(;) is regular and therefore integrally closed.
But since B is integrally closed, this implies C,) = B, and B/pB = C/pC. Also we
have for p € U the decomposition in primes of B,

pB =d1,---,9m,

where the ¢; are all pairwise different and they all have the same residue field degree

f=1[B/qi: Fp].
This implies that
m
C/pC = H F,s
i=1



To show that p splits completely in L, we have to show that f = 1. For this, it suffices
to show that there is a nontrivial ring homomorphism C/pC — F,,. By assumption, we
know that b = r mod p, so it lies in the image of Z in C'/pC. So we define the morphism
to be

C/pC —Fp,, b — r mod p.

Note also that b ¢ pB for all but finitely many p, because we know that the ideal in pB
has a finite decomposition into prime ideals. So the defined map is not zero for all but
finitely many prime numbers p. This shows that almost all p split completely in L and
we conclude that b € Q.

We see that this specific differential equation satisfies the Grothendieck Katz conjecture.

Another connection, which satisfies the Grothendieck Katz conjecture is the Gau3-Manin
connection.

Theorem 14. The Gauf-Manin connection satisfies the Grothendieck-Katz conjecture.



