
Tilting

Today, we want to introduce the tilting functor and see a few properties. In particular,
we will show that it is related to the functor of ramified Witt vectors, which we saw last
week.

Setting

For this talk we fix:

• p ∈ Z prime

• E/Qp a finite field extension

• OE = {x ∈ E | |x| ≤ 1} ⊂ E the ring of integers

• π ∈ E a uniformizer, i.e., (π) = m = {x ∈ E | |x| < 1} ⊂ OE the maximal ideal

• Fq = OE/(π) the residue field

Before we start with the definition of the tilt, we present a lemma, which will be used
several times in the following.

Lemma 1. Let A be an OE-algebra and I ⊂ A an ideal such that π ∈ I and let a, b ∈ A
such that a ≡ b mod I. Then we have

aq
k ≡ bq

k
mod Ik+1

for all k ≥ 0.

Proof. By induction, it suffices to show that a ≡ b mod Ik implies aq ≡ bq mod Ik+1

for k ≥ 1. For this, we write b = a+ c with c ∈ Ik. Then

bq = (a+ c)q =

q∑
i=0

(
q

i

)
aicq−i ≡ aq mod Ik+1,

since c ∈ Ik and q ∈ (π) ⊂ I.

The tilting functor

Definition 2. Let A be a π-complete OE-algebra. Then we define

A♭ := lim←−
x7→xq

A/π = {(a0, a1, . . . , ) ∈
∏
N

A/π | aqi+1 = ai}

the tilt of A.

The tilt can be defined for general OE-algebras, but in the following we will only
consider π-complete ones and therefore only define the tilt for these.
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Remark 3. (1) A♭ is a ring, since (−)q : A/π → A/π is a ring homomorphism

(2) The tilt A♭ is an O♭
E = Fq-algebra

(3) A♭ is perfect, i.e., (−)q : A♭ → A♭ is bijective. Namely, it has the inverse

(a0, a1, . . . ) 7→ (a1, a2, . . . ).

Therefore, we get a functor

(−)♭ : {π − complete OE − algebras} → {perfect Fq − algebras}

Proposition 4. Let A be a π-complete OE-algebra, I ⊂ A an ideal such that π ∈ I and
A is I-adically complete. Then the map

lim←−
x7→xq

A → (A/I)♭, (a0, a1, . . . ) 7→ (ā0, ā1, . . . )

is a bijective morphism of multiplicative monoids.

Proof. We want to construct an inverse map. For this, let x = (x0, x1, . . . ) ∈ (A/I)♭ and
consider x̃i ∈ A lifts of the xi.

Claim: {x̃q
i

i }i≥0 is a Cauchy sequence with respect to the I-adic topology.

To show this, let j ≥ i. Then xq
i−j

j = xi in A/I, i.e., x̃q
i−j

j ≡ x̃i mod I. By Lemma 1,

x̃q
j

j ≡ x̃q
i

i mod Ii+1

and therefore {x̃q
i

i }i≥0 is a Cauchy sequence. Since A is I-adically complete, the limit of
this sequence exists. We define

x♯ := lim
i→∞

x̃q
i

i ∈ A

Claim: x♯ is independent of the choice of the x̃i.

For this, let ỹi ≡ x̃i mod I. By Lemma 1, this implies ỹq
i

i ≡ x̃q
i

i mod Ii+1 and therefore

lim
i→∞

ỹq
i

i = lim
i→∞

x̃q
i

i .

We get a map
(−)♯ : (A/I)♭ → A,

which is well-defined and clearly multiplicative. Now define

(A/I)♭ → lim←−
x7→xq

A, x 7→ (x♯, (x1/q)♯, (x1/q
2
)♯, . . . ).

This is an inverse: Let (a0, a1, . . . ) ∈ lim ←−
x7→xq

A

(a0, a1, . . . ) 7→ ā = (ā0, ā1, . . . ) 7→ (ā♯, (ā1/q)♯, . . . ) = ( lim
i→∞

aq
i

i , limi→∞
aq

i

i+1, . . . ),
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and since aq
i

i+j = aj , we have

lim
i→∞

aq
i

i+j = lim
i→∞

aj = aj .

On the other hand, for x = (x0, x1, . . . ) ∈ (A/I)♭, then

(x0, x1, . . . ) 7→ (x♯, (x1/q)♯, . . . ) = ( lim
i→∞

x̃q
i

i , limi→∞
x̃q

i

i+1, . . . ) 7→ ( lim
i→∞

xq
i

i , limi→∞
xq

i

i+1, . . . ) = x

by the same argument as before.

Remark 5. (1) In particular, we get an additive structure on the left hand side by using
the additive structure on the tilt: Let (a0, a1, . . . ), (b0, b1, . . . ) ∈ lim ←−

x7→xq
A, then

(a0, a1, . . . ) + (b0, b1, . . . ) = ( lim
i→∞

(ai + bi)
qi , lim

i→∞
(ai+1 + bi+1)

qi , . . . )

(2) Also, by the proposition, we can conclude that we have

A♭ ∼= lim←−
x7→xq

A

as multiplicative monoids (by taking I = (π)). In particular, we see that for
x = (x0, x1, . . . ) ∈ A♭, (x1/q

n
)♯ is a lift of xn modulo π.

Last week, the ramified Witt vectors were introduced. We now want to show, how
they are connected to the tilt.

Proposition 6. The functor

(−)♭ : {π-complete OE-algebras} → {perfect Fq-algebras}

is right adjoint with left adjoint given by the functor WOE
(−).

Proof. We want to construct the unit and the counit of the adjunction. The unit is given
by

η : R → WOE
(R)♭ = lim←−

x7→xq

WOE
(R)/π = lim←−

x7→xq

R,

r 7→ (r, r1/q, r1/q
2
, . . . ).

Note that this is an isomorphism, which implies in particular that WOE
(−) is fully

faithful.
The counit θ : WOE

(A♭) → A (for a π-complete OE-algebra A) is called Fontaine’s
map. For the construction, we first note that by definition of the Witt vectors, the map

Wn : WOE
(A) → A/πn+1, (a0, a1, . . . ) 7→

n∑
i=0

aq
n−i

i πi
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is a morphism of rings. If we further assume that ai ≡ 0 mod π, then aq
n−i

i ≡ 0
mod πn−i+1 for all 0 ≤ i ≤ n by Lemma 1. Therefore,

n∑
i=0

aq
n−i

i πi ≡ 0 mod πn+1.

and therefore, Wn factors over WOE
(A/π) and clearly also over

WOE ,n(A/π) = WOE
(A/π)/V n+1(WOE

(A/π)),

i.e., we get a well defined map

θn : WOE ,n(A/π) → A/πn+1.

We get a diagram

WOE ,n+1 A/πn+2

WOE ,n A/πn+1

θn+1

F

θn

where F ((a0, ..., an+1) = (aq0, ..., a
q
n) and map A/πn+2 → A/πn+1 is just the natural

projection. The diagram commutes, since

θn(F (a0, . . . , an+1)) = θn(a
q
0, . . . , a

n
n) =

n∑
i=0

an+1−i
i πi

≡
n+1∑
i=0

an+1−i
i πi = θn+1(a0, . . . , an+1) mod πn+1.

By passing to the limit, we get a map

θ : WOE
(A♭) ∼= lim←−

n,F

WOE ,n(A/π) → lim←−
n

A/πn+1 ∼= A

Now we have to check that these maps really give us the desired adjunction. First, let
f : WOE

(R) → A be a morphism of OE-algebras (R is a perfect Fq-algebra). Then we
have

f ♭ ◦ η : R → WOE
(R)♭ → A♭,

r 7→ (r, r1/q, r1/q
2
, . . . ) 7→ (f̄(r), f̄(r1/q), . . . )

where f̄ : R ∼= WOE
(R)/π → A/π is the map induced by f . We get the map

WOE
(f ♭ ◦ η) : WOE

(R) → WOE
(A♭)

x = (x0, x1, . . . ) 7→ ((f̄(x0), f̄(x
1/q
0 ), . . . ), (f̄(x1), f̄(x

1/q
1 ), . . . ), . . . )

= [(f̄(x0), f̄(x
1/q
0 ), . . . )] + [(f̄(x

1/q
1 ), f̄(x

1/q2

1 ), . . . )] · π + . . .
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and therefore

θ ◦WOE
(f ♭ ◦ η)(x) =

∞∑
i=0

f([x
1/qi

i ])πi = f(
∞∑
i=0

[x
1/qi

i ]πi) = f(x).

For the other direction, let g : R → A♭ be a morphism of Fq-algebras. For r ∈ R, we
denote g(r) = (g(r)0, g(r)1, . . . ) ∈ A♭. We have

θ ◦WOE
(g) : WOE

(R) → WOE
(A♭) → A

(r0, r1, . . . ) 7→ (g(r0), g(r1), . . . ) =

∞∑
i=0

[g(ri)
1/qi ]πi 7→

∞∑
i=0

(g(ri)
1/qi)♯πi

and therefore

(θ ◦WOE
(g))♭ : WOE

(R)♭ = lim←−
x7→xq

WOE
(R)/π → A♭

([x0], [x1], . . . ) 7→ (g(x0)0, g(x1)0, . . . )

because [xi] = (xi, 0, . . . ) ∈ WOE
(R) and g(xi)0 is a lift of g(xi)

♯ modulo π. Now this
gives us

(θ ◦WOE
(g))♭ ◦ η(r) = (θ ◦WOE

(g))♭([r], [r1/q], [r1/q
2
], . . . ) = (g(r)0, r(r

1/q)0, g(g
1/q2)0, . . . )

= g(r)0, g(r)
1/q
0 , g(r)

1/q2

0 , . . . ) = g(r)0, g(r)1, g(r)2, . . . ) = g(r).

Note that for the computations we use the explicit description of the map θ from Lemma
7.

Lemma 7. Let A be a π-complete OE-algebra. Then θ is given by

θ

( ∞∑
i=0

[ai]π
i

)
=

∞∑
i=0

a♯iπ
i.

Proof. First, we note that every element in WOE
(A♭) can be written as

∑∞
i=0[ai]π

i. Now
we can check the statement of the Lemma on a finite level of the limit. For this, note that
an element a = (a0, a1, . . . ) ∈ WOE

(A♭) = lim←−
n,F

WOE ,n(A/π) with ai = (ai,0, ai,1, . . . ) ∈
A♭, is corresponding to the element (a0,n, a1,n, . . . , an,n) ∈ WOE ,n(A/π) on the finite level
n. Now we have

∞∑
i=0

[ai]π
i = (a0, a

q
1, a

q2

2 , . . . ) ∈ WOE
(A♭),

and therefore, it corresponds to the element (a0,n, a
q
1,n, a

q2

2,n, . . . , a
qn
n,n) = (a0,n, a1,n−1, a2,n−2, . . . , an,0),

and

θn(a0,n, a1,n−1, a2,n−2, . . . , a0,n) =

n∑
i=0

aq
n−i

i,n−iπ
i
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But now (a
1/qn−i

i )♯ is a lift of ai,n−i modulo π and therefore

n∑
i=0

((a
1/qn−i

i )♯)q
n−i

πi =

n∑
i=0

a♯iπ
i ≡

∞∑
i=0

a♯iπ
i mod πn+1

is a lift of
∑n

i=0 a
qn−i

i,n−iπ
i modulo πn+1.

Recall 8. (1) A perfect prism is a pair (WOE
(R), I), where R is a perfect Fq-algebra

and I ⊂ WOE
(R) is an ideal, generated by an element d ∈ WOE

(R), such that
F (d)−dq

π ∈ WOE
(R)× (i.e., d is distinguished) and WOE

(R) is I-adically complete.

(2) An OE-algebra A is perfectoid, if A ∼= WOE
(R)/I for a perfect prism (WOE

(R), I).

Proposition 9 (Tilting equivalence). Let A be a perfectoid OE-algebra. Then the functor

{perfectoid A-algebras} → {perfect A♭-algebras}
B 7→ B♭

is fully faithful with essential image all perfect A♭-algebras S, such that WOE
(S) is

I-adically complete when writing A ∼= WOE
(A♭)/I.

Proof. Note first that for any perfect Fq-algebra R, there is an equivalence

{untilts (A, ι) of R over OE} ∼= {I ⊂ WOE
(R) such that (WOE

(R), I) is a prism}.

Also one checks that if (WOE
(R), I) → (WOE

(S), J) is a morphism of prisms, then
necessarily J = IWOE

(S).
We also use in this proof that for any perfectoid A ∼= WOE

(R)/I, we have

A♭ ∼= (WOE
(R)/I)♭ ∼= R

by using Proposition 4.
With this info, it is easy to first check the statement about the essential image. First note

that if we start with a perfectoid A-algebra B, then B ∼= WOE
(B♭)/J for J ⊂ WOE

(B♭)
ideal such that (WOE

(B♭), J) is a prism. But since (WOE
(A♭), I) → (WOE

(B♭), J) is a
morphism of prisms, we know that J = IWOE

(B♭) and therefore WOE
(B♭) is I-adically

complete. If we have a perfect A♭-algebra such that WOE
(S) is I-adically complete, then

(WOE
(S), IWOE

(S)) is a perfect prism and therefore WOE
(S)/IWOE

(S) is an untilt of
S, which shows that S lies in the essential image.
It is now also clear that we can define an inverse functor from the essential image of

(−)♭ in the other direction:

S 7→ WOE
(S)/IWOE

(S).

Then clearly
WOE

(B♭)/IWOE
(B♭) ∼= B,

for B perfectoid (by the above argumentation). If on the other hand we start with a
A♭-algebra S in the essential image, then

(WOE
(S)/IWOE

(S))♭ ∼= S.
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Important example of a perfectoid OE-algebra

For the rest of the talk, we want to consider one important (maybe the most important)
example of a perfectoid OE-algebra.

Proposition 10. Let C be an algebraically closed, non-archimedian extention of E (note
that by definition, C is a completely valued field) with valuation

ν : C → R ∪ {∞}.

Then the ring of integers
OC := {x ∈ C | ν(x) ≥ 0}

is a perfectoid OE-algebra.

Proof. We need to show that OC
∼= WOE

(R)/I for a perfect prism (WOE
(R), I). Actually,

in this situation, there is an obvious choice for R, namely O♭
C . Therefore, what we will

show is that θ : WOE
(O♭

C) → OC is surjective and ker θ is generated by a distinguished
element.
Claim: θ : WOE

(O♭
C) → OC is surjective.

Let a ∈ OC . Since C is algebraically closed, we can find elements b1, b2, · · · ∈ OC such
that a0 = (a, b1, b2, . . . ) defines an element in lim ←−

x7→xq
OC

∼= O♭
C . Then a♯0 ∈ OC is a lift

of a modulo π. Therefore, a− a♯0 = πa′ and we can do the same thing for a′. Doing this

inductively, we get elements ai ∈ O♭
C such that

∑n
i=0 a

♯
iπ

i is a lift of a modulo πi+1 and

therefore a =
∑∞

i=0 a
♯
iπ

i.
Let π1/qn ∈ OC be a compatible system of qn-th roots of π. These exist since C is

algebraically closed. Let

π♭ := (π, π1/q, . . . ) ∈ lim←−
x7→xq

OC
∼= O♭

C .

Claim: O♭
C/π

♭ ∼= OC/π via the ♯-map.
For this, consider the ♯-map

(−)♯ : lim←−
x7→xq

OC
∼= O♭

C → OC , (y0, y1, . . . ) 7→ y0

Let y = (y0, y1, . . . ) ∈ lim ←−
x7→xq

OC
∼= O♭

C . Then π♭|y if and only if π1/qn |yn for all n.

Since we are in a valuation ring, this happens if and only if ν(yn) ≥ ν(π1/qn) = q−nν(π)
for all n, i.e., if and only if ν(y0) ≥ ν(π) (as y0 = yq

n

n , we have ν(y0) = qnν(yn) and
therefore ν(yn) = q−nν(y0)). But again, using that OC is a valuation ring, this happens
if and only if y0 ≡ 0 mod π. Therefore,

ker(O♭
C

(−)♯−−−→ OC → OC/(π)) = (π♭).

Since the ♯-map is surjective, we conclude O♭
C/π

♭ ∼= OC/π.
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We now want to show that ξ := π − [π♭] generates ker(θ : WOE
(O♭

C) → OC). Since
(WOE

(O♭
C), ξ) is a perfect prism, this will finish the proof (note: ξ = [r0] + [r1]π with

r0 = π♭ and r1 = 1 ∈ (O♭
C)
× clearly. Therefore ξ is distinguished and since OC is

π-complete, lim ←−
x7→xq

OC is π♭-complete: We have

lim←−
n

(( lim←−
x7→xq

OC)/(π
♭)n) = lim←−

x7→xq

(lim←−
n

OC/π
n) ∼= lim←−

x7→xq

OC .)

For this, we first note that

θ(π − [π♭]) = π − (π♭)♯ = π − π = 0,

so ξ ∈ ker(θ).
It remains to show that ξ generates ker(θ). For this, let x =

∑∞
i=0[xi]π

i ∈ ker(θ). Then

0 = θ(x) =

∞∑
i=0

x♯iπ
i

and therefore x♯0 ≡ 0 mod π. By the above argumentation, this implies that π♭|x0.
Writing z0 =

∑∞
i=1[xi]π

i−1, we get

x = [x0] + πz0 = [x0] + πz0 − [π♭]z0 + [π♭]z0 = [x0] + [π♭]z0 + ξz0 = [π♭]x′ + ξz0,

since π♭|x0 and the Teichmüller lift is multiplicative. But now

0 = θ(x) = θ([π♭]x′) + θ(ξz0) = θ([π♭]x′) = πθ(x′),

which implies θ(x′) = 0 because π ∈ OC is a non-zero divisor. We can do the same thing
again for x′, i.e., write x′ = [π♭]x′′ + ξz1 and so on to get

x = ξz0 + [π♭]x′ = ξz0 + [π♭](ξz1 + [π♭]x′′) = · · · = ξ ·
∞∑
i=0

[π♭]izi,

and since WOE
(O♭

C) is [π♭]-adically complete this finishes the proof (see for example
[Bhatt, Morrow, Scholze: Integral p-adic Hodge theory, Lemma 3.2(ii)]).

Lemma 11. Let C be as above. Then O♭
C is a valuation ring with associated valuation

ν♭ : O♭
C → R ∪ {∞}, x 7→ ν(x♯).

Moreover, O♭
C is complete for its valuation topology and its fraction field C♭ := Frac(O♭

C)
is algebraically closed.

Proof. We first show that ν♭ is a valuation:

1. Since (−)♯ is multiplicative, we have ν♭(xy) = ν♭(x) + ν♭(y).

2. ν♭(x) = ∞, iff x♯ = 0 in OC , iff xi = 0 ∈ OC/(π) for all i, where x = (x0, x1, . . . ).
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3. For the non-archimedian triangle inequality, we use that we know from earlier that
(x1/q

n
)♯ is a lift of xn modulo π. Therefore, we have

ν♭(x+ y) = ν((x+ y)♯) = ν( lim
n→∞

((x1/q
n
)♯ + (y1/q

n
)♯)q

n
)

= lim
n→∞

qnν((x1/q
n
)♯ + (y1/q

n
)♯)

≥ lim
i→∞

min(ν((x1/q
n
)♯), ν((y1/q

n
)♯))

= lim
n→∞

min(ν(((x1/q
n
)♯)q

n
), ν(((y1/q

n
)♯)q

n
))

= min(ν♭(x), ν♭(y))

The next thing, we want to show is the completeness. First note that the inverse limit
topology induced by O♭

C
∼= limx7→xq OC is complete, since C is completely valued (OC is

a Fréchet space and limx7→xq OC ⊂
∏

n∈NOC is closed. Then
∏

n∈NOC , as a countable
product of Fréchet spaces, is again a Fréchet space and the closed subset limx7→xq OC is
complete.)

But a basis for the inverse limit topology around 0 is given by sets of the form

{x ∈ O♭
C | ν((x1/qn)♯) ≥ m} = {x ∈ O♭

C | ν♭(x) ≥ qnm}

for n,m ≥ 0 and a basis for the topology induced by ν♭ is given by the sets

{x ∈ O♭
C | ν♭(x) ≥ m}

for m ≥ 0, which shows that the topologies are equivalent.

It remains to show that C♭ is algebraically closed. To show this, it suffices to show
that every normed polynomial in O♭

C [T ] of degree ≥ 1 has a root. (Because: Let
f = qdT

d + · · · + q0 ∈ C♭[T ] with qn ̸= 0. By multiplying with nonzero elements in
O♭

C , we can assume that qi ∈ O♭
C . But now f has a zero, if and only if qd−1d f =

(qdT )
d + qd−1(qdT )

d−1 + qd−2qd−1(qdT )
d−2 + · · ·+ a0q

d−1
n has a zero, and this has a zero

for T if and only if it has a zero for qdT .)
So let

f = T d + ad−1T
d−1 + · · ·+ a0 ∈ O♭

C [T ]

with d ≥ 1 and we want to show that it has a zero in O♭
C . We set

fn(T ) := T d + (a
1/qn

d−1 )
♯T d−1 + · · ·+ (a

1/qn

0 )♯ ∈ OC [T ].

Then

fn+1(T )
q = (T d)q + ((a

1/qn+1

d−1 )♯T d−1)q + · · ·+ ((a
1/qn+1

0 )♯)q + q · (. . . )

= T dq + (a
1/qn

d+1 )
♯T (d−1)q + · · ·+ (a

1/qn

0 )♯ + q · (. . . )
≡ fn(T

q) mod π.
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Let us now fix an n ≥ 0, let x ∈ OC be a zero of fn and let y ∈ OC such that yq = x.
Since C is algebraically closed, we know that x and y exist. By the above observation,
we have

fn+1(y)
q ≡ fn(y

q) = fn(x) = 0 mod π,

which means that π divides fn+1(y)
q, and since we are in a valuation ring, this means

that

ν(fn+1(y)) ≥
1

q
v(π).

Let z1, . . . , zd ∈ OC be the zeros of fn+1. Again we know that they exist. Then

fn+1 =
d∏

i=1

(T − zi),

and therefore

fn+1(y) =

d∏
i=1

(y − zi).

Since

ν(fn+1(y)) =

d∑
i=1

ν(y − zi) ≥
1

q
ν(π),

there must be an i such that ν(y − zi) ≥ 1
dqν(π). This means that π divides

(y − zi)
qd = ((y − zi)

q)d = (yq − zqi + qa)d = (yq − zqi )
d + qa′,

for some a, a′ ∈ OC . But since π divides q, we see that π has to divide (yq − zqi )
d, which

implies

ν(x− zqi ) ≥
1

d
ν(π).

Inductively, we get a sequence (xn)n≥0 ⊂ OC such that

• fn(xn) = 0

• ν(xqn+1 − xn) ≥ 1
dν(π).

If we now set a := {y ∈ OC | ν(y) ≥ 1
dν(π)}, which is an ideal in OC , then x := (x0, x1, . . . )

defines an element in
(OC/a)

♭ ∼= lim←−
x7→xq

OC
∼= O♭

C ,

and clearly f(x) = 0.
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