One ring to rule them all
by Julian Reichardt

Three rings for the Elven-kings under the sky,
Beris, Bst, Bar
Seven for the Dwarf-lords in their halls of stone,
A, Eq, Ag, Bo, E A B,

Nine for the mortal Men doomed to die,
Qp; Zp; ]Fp: Qp, Cp; Opr Q}lynrx BHT;
One ring to rule them all,

Ajnt.

P. Colmez [Col19]

Introduction

Classical Hodge theory states that for a smooth projective complex variety X, the singular cohomology of
its analytification X*" can be computed in terms of its Hodge cohomology, after base changing the singular
cohomology to the complex numbers. This generalises to smooth proper K-schemes, for K/Q,, finite, where the
the Hodge—Tate decomposition shows that after base changing to a completed algebraic closure C = ?, the étale
cohomology of Xz can be identified with the Hodge cohomology of X base changed to C. This can even be done
equivariantly for the action of the absolute Galois group Gk of K, by taking Tate twists into account for the Hodge
cohomology.

The comparison theorems of p-adic Hodge theory aim at establishing analogues results for the various other
cohomology theories associated to X and related geometric objects. However, it typically no longer suffices to
just base change the étale cohomology of X to C. Instead, one introduces various period rings allowing for these
comparison results to be hold. Two of the central cases are the de Rham period ring Bgg, for the algebraic de
Rham cohomology of X, and the crystalline period ring B, for the crystalline cohomology of Xy, the reduction
of a smooth proper integral model X of X (in the case where X has good reduction). The underlying integral
period rings B;‘R and BT can both be constructed from the same source: Fontaine’s first period ring Ains.

cris

Plan: e define Fontaine’s first period ring Aj,¢
e compare Aj,s with a ring of formal power series Of[[z]

o define and study the integral de Rham period ring BXR

+

cris

o define and study the integral crystalline period ring B

Notation: Let p be a fixed prime. Let E/Q, denote a finite field extension with ring of integers Og. Fix a
uniformiser 7 € mg so that the residue field is Og/(m) = F, with g = pf . Let C be a complete nonarchimedean
algebraically closed extension of E, with ring of integers Oc = {x € C||x| <1} C C, and maximal ideal

me ={x€O0c|lxl <1} <Oc.



1 Fontaine’s First Period Ring A;,¢

1.1 Defining Ajnt

We have fixed a complete nonarchimedean algebraically closed extension C of E. We denote by O = OI’C the tilt
of its ring of integers and by F = Frac(ObC) the fraction field of its tilt. Last talk, we saw that O is a perfectoid
Op-algebra and that C? is an algebraically closed extension of O% = IF,. Relative our choice of C, we make the

following definition.

Definition 1.1. We define Fontaine’s first period ring by

Aijnt = Wo,(OF). y

Remark 1.2. Instead of fixing C as a complete nonarchimedean algebraically closed extension of E, we could

have fixed F as a complete nonarchimedean algebraically closed extension of IF,. In this case, we need to choose

C as a suitable untilt of F, which will be the topic of the next talk. 1
Let us briefly explain the notation for Ajys.

Definition 1.3. Let R be a r-complete Og-algebra. A surjection D — R of Og-algebras with kernel I so that D is

(1, m)-adically complete is called a wr-adic pro-infinitesimal thickening of R. a

Proposition 1.4. Let R € {O¢, Oc/(n)}. Then At is the universal m-adic pro-infinitesimal thickening of R, i.e.

for each m-adic pro-infinitesimal thickening D — R, there exists a unique morphism Ay — D over R.

Proor. To prove the proposition, we recall that there is an adjunction

~ b
Homy_complete 0p-algebras(Wog (=), —) = Homyperfect IFq-algebras(_s =)

with tilting (-)” as right-adjoint and taking ramified Witt vectors Wo,(-) as left-adjoint.

We first check, that Ajyr is a r-adic pro-infinitesimal thickening of R. While proving, that Oc¢ is a perfectoid
Og-algebra, it was established that the counit of the adjunction yields a surjection Aj,y — O¢ with kernel 1
generated by § = 7 — [7rb]. The (I, m)-adic completeness of Aj,¢ follows from Aju¢/(I, ) = O¢ /() and the m-adic
completeness of O¢. If we consider the induced surjection Aj,s — Oc¢ /() with kernel J, we have (J, ) = (I, 7).
Thus, A,y — R is a m-adic pro-infinitesimal thickening of R.

Now let D — R be a mr-adic pro-infinitesimal thickening of R. We then compute
R = (R/(m)’ = (D/(I,m)’ = D".
Thus, there is a unique morphism Ajy; — D inducing the isomorphism D’ = R” along the bijections

b
Homﬂ—complete Og-algebras (Ains, D) = Homﬂ—comp]ete OE—algebras(WOE (Oc)’ D)
~ b b
= Homperfect IF,-algebras (OC» D")

= HoMperfect F,-algebras((Oc /(). D).

In particular, the isomorphism R’ = D' lifts to a unique morphism A;,y — D, as needed. O



1.2 Interlude: The Ring Ofp[[z]]

Since Or is a perfect IF -algebra, we know that every element of A;,r = Wy, (Or) has unique expression as
a power series in 7 with coefficients in Teichmiiller lifts of elements Of. Although, the ring structure is vastly

different from the ring of formal power series over O, we will see that Aj,r and Of[[z] share a variety of

ap GOF}

be the ring of formal power series over Of. 4

properties.
But let us first review some properties of the ring Op[[z].
Definition 1.5. Let

(]

Orlzl = { D an?"

n=0

As Op is not discretely valued, O is non-noetherian and its maximal ideal satisfies m% = mpg. Using this, one
can show that Or[[z]] has infinite Krull dimension.
Theorem 1.6 ([Arn73]). The ring Ofl[z] has infinite Krull dimension. m|

Nonetheless, one can make the prime spectrum of Or[[z]] more explicit. Of course, one has the zero ideal (0), as
OrF is an integral domain, and one has the unique maximal ideal (mp, z), as Op[[z] is a formal power series ring
over the complete local ring (O, mp). Moreover, for each a € mg and f € Of[[z], the series f(a) converges to a

well-defined element of Of. Thus, one obtains the evaluation morphisms
evq: Orllzl — Or, f(@) — fa)

for each a € mp. We claim that their kernels are the prime ideals (z — a) and that there are no other prime ideals
not contained in the extension of the maximal ideal mg[[z]. Thus, Of[[z] being of infinite Krull dimension comes

down to the prime spectrum of the localisation Of [[z]ln [z being of infinite Krull dimension.

Proposition 1.7. The spectrum of Or|z] is given by

Spec (Or[z]) = {(0), (mp,2)} U{(z —a) |a € mp} U Spec (Op[zlwppz) -

Proor. We use Weierstral} theory for formal power series rings over complete local rings to prove the claimed
decomposition. First, the WeierstraB3 division theorem implies, that if a € mg and & € OFf[z], then there
exists ¢ € Ofllz] and r € OF so that h = g(z — a) + r. Second, the Weierstra} preparation theorem implies,
that if f = »* (a,z" ¢ mplzl, then f = ug with u a unit and g a distinguished polynomial of degree
d = min {n la, € O;}, i.e. a monic polynomial of degree d = min {n |a, € Ojé} whose remaining coefficients
are in mg.

Observe that the above ideals are all prime. This is clear for the zero ideal (0), as Of[z] is an integral domain,
and also for (mp, ), as the quotient Or[[z]]/(mF, z) can be identified with the residue field of O. For the ideals
(z — a) with a € mp, we note that these are the kernels of the valuation morphisms ev, : Ofr[z] — O, which can
be seen using the Weierstral division theorem. In particular, (z — @) is prime for all a € mg. Finally, the ideals in
Spec (Op [zl |[z]]) are prime by definition.

Now let p be a prime ideal of Op[[z]]. We assume that p # (0). We claim that if, furthermore, p ¢ mg[[z]], then
either there exists a € mg such that p = (z — a), or p = (Mg, 2).

By assumption, there exists f = 3. ja,z" € p such that f ¢ mp[z]. Thus, by Weierstra3’ preparation

theorem, there exists a distinguished polynomial g of degree d = min {n la, € O;f.} such that f = ug for some



unit u. As F is algebraically closed, g decomposes into linear factors and since g is distinguished all its root
are elements in mg. Since p is prime, x — a € p for some a € mp. If p = (z — a), we are done. So suppose that
(x —a) € p. For h € p not a multiple of z — a, Weierstra} division yields & = g(z — a) + r with r € Of. Note that
r = f —q(z—a) € p. Now r cannot be a unit, as p is a prime ideal. Thus, r € mg. As F is algebraically closed,
rl/m e mp exists for all m > 1. Moreover, plim
As |b| < 1, there exists m such that |b| < |r!/™|. In particular, |b/r'/™| < 1 and b = (b/r'/™)r!/™ shows that b € p.

Thus, (z —a, mg) = (z, mg) C p, which shows that p = (mg, z) as (mg, z) is maximal. O

€ p for all m > 1 since p is prime. Now let b € my be arbitrary.

Finally, we given a geometric interpretation of the ring Or[z]. For this, let
Dy ={xeF|lxl <1}
be the open rigid analytic unit disk. Fix a pseudo-uniformiser ¢ € mg. The sets
D (71m) = {x cF ‘ Ix| < |r|1/’"}
form an open admissible cover of ]D;, thus
o5 = im, 0 (13 (1))

- lian { Z an?" |an||t|n/m g 0}

n=0

n=0

laylo™ — 0 forall p < 1} .

Note that if f € Of[[z], then f € O(ID},). Conversely, if f € O(ID},) is uniformly bounded by 1, then f € Of[z].
Thus, OFr[z] is the ring of bounded rigid analytic functions on the open unit disk.

1.3 Basic Properties of Ajut

We now go over some basic properties of Aj,¢, mirroring our discussion of Of[z].
For starters, the ring Ajyr is a local domain, by virtue of being constructed as a ring of (ramified) Witt vectors.

Moreover, Ajys is of infinite Krull dimension as well.

Theorem 1.8 ([LL21]). The ring Ains has infinite Krull dimension. O

There is an analogue of the function-theoretic interpretation we gave for Of[[z]]. However, this uses the adic
Fargues—Fontaine curve, which we will no introduce. Instead, we consider the following weak analogue.

Definition 1.9. We define
[Y1[0,00) = {I C Ajnr | I is generated by a distinguished element}

and set
[Y] = Y][0,00) \ {(m)} . y

Remark 1.10. The set |Y| will also be of interest when studying the possible untilts of F (cf. Remark 1.2). a

The distinguished elements appearing in Definition 1.9 admit a more explicit description.



Lemma 1.11. A distinguished element d € Ajns generates a proper ideal I = (d) if any only if d = [a] + nu with
acmpand u € Agpr*. Thus,
1Y1[0,00) = {(mr— [a)|ue Al . ae mF} .

inf?

Proor. Recall that we can write d € Ajyy = Wp, (OF) as d = 3 (ld,]n". It is then known, that d is
distinguished if and only if d; € O}. Moreover, d is a unit, hence the ideal / = (d) is the unit ideal, if and only if
do € O%. Soif I = (d) is a proper ideal and d is required to be distinguished, then dy € mr and d; € OF. Thus,

we may write

d= ) i = [do] + 7 ) [y}
n=0 n=0
Now leta = —dp and u = 372 [un]n" for u, = dy11. As di € Of by assumption, u € Ajys. Moreover, one
checks that [-a] = —[a]. Therefore, we can write d = un — [a], as claimed.
Conversely, any such element is distinguished and not a unit, hence generates a proper ideal I € |Y|jp,0). O

We close this section by recalling, that for every choice = (m, glla .. ),leté =nm— [ﬂ'b]. Then there is an
isomorphism
Aint/(€) = Aine/(m - [1']) = Oc .

This realises O¢ as a perfectoid Og-algebra associated to the perfect prism (Ajys, (£)).

2 The De Rham and Crystalline Period Rings

2.1 The Integral De Rham Period Ring B:R

We now introduce the de Rham period ring, constructed from the perfect prism (Ajy¢, (£)).

Definition 2.1. We define the integral de Rham period ring as
BIR = Ainf[?fl]g .

The field Bgr = Frac(BXR) is called the de Rham period ring, or Fontaine’s field of p-adic periods for C. _

Since B:R is the £-adic completion of Aj,¢[77'], it is a £-adically complete ring so that
Bl /(€)= Ailn /&) = C.

On the other hand, we can endow each Aj¢[7~]/(£") with a unique topology such that Aj,¢/(£") is open in the
m-adic topology. The resulting inverse limit topology on B;R is called the canonical topology.
Proposition 2.2. The natural morphism A — B(J{R is injective.
Proor. As Ay is (m, [ﬂb])-complete and (¢) C (m, (7"]) is finitely generated, Aj, is £€-adically complete. Thus,
it suffices to show that the natural localisation maps Ajnr/(£") — Ajne [=~11/ (&™) are injective. Indeed, the map
Aipr — B:R arises as the projective limit of the maps Ajqe/(€") = Ainr[n~'1/(£") and m is left-exact.

Since & € Ajy is not a zero divisor (Ajps being an integral domain) and Oc is n-torsionfree, using induction

and the short exact sequences

0 — @ H/(E) —— Ant/(€") — At/ —— 0



we see that Ajne/(£") is m-torsionfree for all n > 1. In particular, Ajps/(€") — Aine[n~11/(£") is injective. |
Proposition 2.3. The local ring B;‘R is a discrete valuation ring.

Proor. As B(‘fR is the &-adic completion of Al and Al 11/(€) = C is a field, hence, in particular
noetherian, one can show that BIR is noetherian. Moreover, B(TR is a local domain with maximal ideal generated

by £. Thus, by Krull Hauptidealsatz, B i is of Krull dimension 1. Thus, B is a discrete valuation ring. O

Remark 2.4. As B(TR is a complete discrete valuation ring whose residue field C is of characteristic 0, Cohen’s
structure theorem implies that Bd+R is abstractly isomorphic to C[[z]l. Moreover, using that BCTR is a discrete
valuation ring, one can deduce that the localisation (Ajyr)() is a discrete valuation ring as well. As this is not

needed anywhere, we omit the proof. a

2.2 The Integral Crystalline Period Ring Bctis

We now introduce the crystalline period ring, constructed from the perfect prism (Ajny, (£)) as well. However, for
this we restrict to the case E = Q, and 7 = p.
We recall the notions associated to divided power structures, which are foundational to the theory of crystalline

cohomology.

Definition 2.5. Let A be aring and / < A an ideal. A divided power structure on I, or PD-structure, is a
collection of maps (y,: I — A),>0 such that

1) yox) =1,y1(x) = xand y,(x) € [ forallx e I and n > 2,
() yn(x+y) = Xt j=n Yi(x)y;(y) forall x,y € I,
(iii) yu(ax) = d*yp(x) forallae A, x € I,

(V) YO ym() = Sy (xy) for all x,y € 1,

nm):

V) Yarm() = Ey,(x) for all x € 1.

A divided power ideal of A, or PD-ideal, is a tuple (/,) where I/ < A is an ideal and and y = (y,), is a
PD-structure on /. A divided power algebra, or PD-algebra, is a triple (A, I,y) where A is aring and (/,y) is a
PD-ideal of A.

A morphism of PD-algebras (A, I,y) — (B, J,0) is a morphism of rings f: A — B such that f(/) € J and such
that 6, f = fy, foralln > 0. 4

Definition 2.6. Let (A, I, y) be a PD-algebra. Let B be an A-algebra and (J, ) a PD-ideal in B. We say that
v and ¢ are compatible, if there is a PD-algebra structure (B, IB, %) together with a morphism of PD-algebras
(A, [,')/) g (B,IB,?) such that 7'130] = 0. ]

We recall the two standard examples of PD-structures and PD-envelopes:

(i) Let A be a Q,-algebra and let / < A be any ideal. The maps

Yo I — A, X —

define the unique PD-structure on /.



(ii) Let A be a Z,-algebra and let I = (p). The maps

n—1

Yol —>A, pab (pa")

n!

define the canonical PD-structure on (p).

(iii) Let (A,1,y) be a PD-algebra and let B be an A-algebra with an ideal J < B. Then there exists a B-
algebra Dp,,(J), called the PD-envelope of (B, J) relative to (A, I,y), with a PD-ideal (J,[-]) such that
JDp,(B) C J and such that [-] is compatible with y. The PD-algebra (D, ,(B), 7, [-]) is universal among
B-algebras C containing a PD-ideal (K, d) such that JC € K and such that ¢ is compatible with 7.

When working in characteristic p or mixed characteristic, instead of considering m-adic pro-infinitesimal

thickening—as we did when defining A;,s—we now consider m-adic PD-thickenings for defining A ;.
Definition 2.7. Let R be a p-complete Z ,-algebra. A p-adic PD-thickening of R is a triple (D, D — R, (¥1)n>0)
where D is p-complete, D — R is a surjection, and (y;),>0 is a PD-structure on J = ker(D — R) compatible with
the canonical PD-structure on (p). a
Definition 2.8. We define
— A
Acris T DAmf,ycan ((g))p

can)_

as the p-completion of the PD-envelope of (Ajys, (£)) relative to (Z, (p), ¥

Remark 2.9. One can show, that

Agis = H. (Spec(Oc)/Z) = HY, (Spec(Oc/(p)/Z,)

cris

where H . (-/Z p) denotes crystalline cohomology. a

cris
Denote by Dz,(x) ((x)) the PD-envelope of the Z ,-algebra Z ,[x] and the ideal (x). The canonical morphism

Zplx] = Aijyp, x — & gives rise to an isomorphism
~ A
Acris = Ain®2,1Dz,1x (), -

Moreover,

— n

X

A A
Dz,1x ((X))p = @nzozp T E (Zply0.y1.¥2. - 1/(vo = x, Y] = pyo. Y5 — Py1,~--))p

is the free p-complete PD-algebra on one generator. In particular, we obtain

Acis/(p) = Oc/(p) ®F, Fply1,y2, ... 1/, ¥4, .)

is a very non-noetherian and very non-perfect ring.

Denote by [i—y:] € Ais the n-th divided power of £. Every element of A5 can be written as a power series

S,

n>0

3

n!

with a, € Ajyr converging to 0 in the p-adic topology. Note that this expression is not necessarily unique.



Definition 2.10. We define the integral crystalline period ring as

B:I_'is = Acris [P_l] . a

Remark 2.11. The ring Bs, Fontaine’s ring of crystalline periods, is constructed as a localisation of Bs. -

Lemma 2.12. The natural morphism Ay — B(J{R extends to an injection

+ +
B _)BdR'

cris

Proor. Note that BgR is a Q-algebra by construction, hence the ideal (¢) admits a unique PD-structure. Thus,

the natural morphism A, — B(TR induces a morphism Dp, e ((£)) — BIR

with respect to the canonical topology and Acis = Dp, ¢ yean ((f))?, it suffices to show that the morphism

by definition. As B:{R is complete

Dy () — By

is continuous with respect to the p-adic topology on the domain and the canonical topology on the codomain.

Continuity can be checked on the finite level, so we consider the induced map

D, yen ((€)) — Ainelp™1/(€").

The image of this map is contained in ﬁAinf /(™) and since Ajye/(£") is open by construction, this shows
continuity. Thus, the natural morphism extends to a morphism

+
Ais — BdR

+

and as p is invertible in B dR’

we obtain a morphism

+ +
Bcris - BdR .

It remains to check that this morphism is injective. Note that the axioms of the divided powers imply that

o [£] it e
> Ln! n! m+m!l
In particular, if we can rewrite any finite sum
<o n <o n
>0 il = 200 5]
n! n!
n>0 n>0

so that if b, # 0, then b,, ¢ (£). By taking limits, we may assume that any element x € A is of the form
n
=S |1
n>0

so that if a, # 0, then a,, ¢ (¢). If x # 0, then there is a minimal # so that a,, # 0. In particular, there is a minimal

n so that a, ¢ (£). Thus, the £-adic valuation of x is finite and, hence, the image of x in B(J{R is non-zero. O



Appendix: The Rings of p-adic Hodge Theory

We briefly go over the rings appearing in the quote at the start.
Let us start with the human rings:

(i) Q, is the field of p-adic numbers,
(ii) Z, is the ring of p-adic integers, the ring of integers of Q,,
(iii) IF, is the finite field with p elements, the residue field of Z,,
@iv) @p is an algebraic closure of Q,,
) Fp is an algebraic closure of IF,,
(vi) C, is the completion of (_2[,,
(vii) Oc, is the ring of integers of C,,
(viii) Q;“r is the maximal unramified subextension of 6,,, and
(ix) Byr the Hodge—Tate period ring, is the ring of Laurent polynomials Byt = C,, [*] over C),.
The dwarvish rings are the following:
(i) A is the ring of Witt vectors A = W(C';,) of C,
(i) E‘Qp is the subfield IF, (¢ — 1) of C|1)7 of norms of the cyclotomic extension Q ,(up~),
(iii) Ag, is the closure of Z, [7*1], where 7 = [¢] - 1, in A,
(iv) Bq, is the ring B, = Aq, [p~1,
(v) Eis aseparable closure of E,
(vi) A is the unique p-saturated p-complete subring of A containing Aq, and
(vii) Bisthering B = A[p~'].
Then there are the elvish rings:
(1) Beyis is the crystalline period ring, as constructed in Section 2.2,
(ii) By is the semistable period ring, which as an abstract ring is Bg; = Byis[u] for u = log (%) and
(iii) Bgr is the de Rham period ring, as constructed in Section 2.1.

A finally, of course, the one ring to rule them all:

(1) Ajys is Fontaine’s first period ring, as constructed in Section 1.
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