One ring to rule them all

by Julian Reichardt

Three rings for the Elven-kings under the sky, $B_{cris}, \ B_{st}, \ B_{dR}$ Seven for the Dwarf-lords in their halls of stone, $\tilde{A}, \ E_{\mathbb{Q}_p}, \ A_{\mathbb{Q}_p}, \ B_{\mathbb{Q}_p}, \ E, \ A, \ B,$ Nine for the mortal Men doomed to die, $\mathbb{Q}_p, \ \mathbb{Z}_p, \ \mathbb{F}_p, \ \overline{\mathbb{Q}}_p, \ \mathbb{C}_p, \ O_{\mathbb{C}_p}, \ \mathbb{Q}_p^{unr}, \ B_{HT},$ One ring to rule them all, $A_{inf}.$ P. Colmez [Col19]

Introduction

Classical Hodge theory states that for a smooth projective complex variety X, the singular cohomology of its analytification X^{an} can be computed in terms of its Hodge cohomology, after base changing the singular cohomology to the complex numbers. This generalises to smooth proper K-schemes, for K/\mathbb{Q}_p finite, where the the Hodge–Tate decomposition shows that after base changing to a completed algebraic closure $C = \widehat{K}$, the étale cohomology of $X_{\overline{K}}$ can be identified with the Hodge cohomology of X base changed to $X_{\overline{K}}$ can even be done equivariantly for the action of the absolute Galois group $X_{\overline{K}}$ of $X_{\overline{K}}$ by taking Tate twists into account for the Hodge cohomology.

The comparison theorems of p-adic Hodge theory aim at establishing analogues results for the various other cohomology theories associated to X and related geometric objects. However, it typically no longer suffices to just base change the étale cohomology of X to C. Instead, one introduces various $period\ rings$ allowing for these comparison results to be hold. Two of the central cases are the $de\ Rham\ period\ ring\ B_{dR}$, for the algebraic de Rham cohomology of X, and the $crystalline\ period\ ring\ B_{cris}$, for the crystalline cohomology of X_0 , the reduction of a smooth proper integral model X of X (in the case where X has good reduction). The underlying integral period rings B_{dR}^+ and B_{cris}^+ can both be constructed from the same source: Fontaine's $first\ period\ ring\ A_{inf}$.

Plan: • define Fontaine's first period ring \mathbb{A}_{inf}

- compare \mathbb{A}_{inf} with a ring of formal power series $O_F[[z]]$
- define and study the integral de Rham period ring B⁺_{dR}
- define and study the integral crystalline period ring B⁺_{cris}

Notation: Let p be a fixed prime. Let E/\mathbb{Q}_p denote a finite field extension with ring of integers O_E . Fix a uniformiser $\pi \in \mathfrak{m}_E$ so that the residue field is $O_E/(\pi) = \mathbb{F}_q$ with $q = p^f$. Let C be a complete nonarchimedean algebraically closed extension of E, with ring of integers $O_C = \{x \in C \mid |x| \le 1\} \subseteq C$, and maximal ideal $\mathfrak{m}_C = \{x \in O_C \mid |x| < 1\} \le O_C$.

1 Fontaine's First Period Ring \mathbb{A}_{inf}

1.1 Defining A_{inf}

We have fixed a complete nonarchimedean algebraically closed extension C of E. We denote by $O_F = O_C^{\flat}$ the tilt of its ring of integers and by $F = \operatorname{Frac}(O_C^{\flat})$ the fraction field of its tilt. Last talk, we saw that O_C is a perfectoid O_E -algebra and that C^{\flat} is an algebraically closed extension of $O_E^{\flat} = \mathbb{F}_q$. Relative our choice of C, we make the following definition.

Definition 1.1. We define **Fontaine's first period ring** by

$$\mathbb{A}_{\inf} := W_{O_E}(O_F).$$

Remark 1.2. Instead of fixing C as a complete nonarchimedean algebraically closed extension of E, we could have fixed F as a complete nonarchimedean algebraically closed extension of \mathbb{F}_q . In this case, we need to choose C as a suitable *untilt* of F, which will be the topic of the next talk.

Let us briefly explain the notation for \mathbb{A}_{inf} .

Definition 1.3. Let R be a π -complete O_E -algebra. A surjection $D \to R$ of O_E -algebras with kernel I so that D is (I, π) -adically complete is called a π -adic pro-infinitesimal thickening of R.

Proposition 1.4. Let $R \in \{O_C, O_C/(\pi)\}$. Then \mathbb{A}_{\inf} is the universal π -adic pro-infinitesimal thickening of R, i.e. for each π -adic pro-infinitesimal thickening $D \to R$, there exists a unique morphism $\mathbb{A}_{\inf} \to D$ over R.

PROOF. To prove the proposition, we recall that there is an adjunction

$$\operatorname{Hom}_{\pi\text{-complete }O_E\text{-algebras}}(W_{O_E}(-),-) \cong \operatorname{Hom}_{\operatorname{perfect }\mathbb{F}_q\text{-algebras}}(-,(-)^{\flat})$$

with tilting $(-)^{\flat}$ as right-adjoint and taking ramified Witt vectors $W_{O_F}(-)$ as left-adjoint.

We first check, that A_{\inf} is a π -adic pro-infinitesimal thickening of R. While proving, that O_C is a perfectoid O_E -algebra, it was established that the counit of the adjunction yields a surjection $A_{\inf} \to O_C$ with kernel I generated by $\xi = \pi - [\pi^{\flat}]$. The (I, π) -adic completeness of A_{\inf} follows from $A_{\inf}/(I, \pi) \cong O_C/(\pi)$ and the π -adic completeness of O_C . If we consider the induced surjection $A_{\inf} \to O_C/(\pi)$ with kernel I, we have I where I is a I-adic pro-infinitesimal thickening of I.

Now let $D \to R$ be a π -adic pro-infinitesimal thickening of R. We then compute

$$R^{\flat} \cong (R/(\pi))^{\flat} \cong (D/(I,\pi))^{\flat} \cong D^{\flat}$$
.

Thus, there is a unique morphism $\mathbb{A}_{\inf} \to D$ inducing the isomorphism $D^{\flat} \cong \mathbb{R}^{\flat}$ along the bijections

$$\begin{split} \operatorname{Hom}_{\pi\text{-complete }O_E\text{-algebras}}(\mathbb{A}_{\inf},D) &= \operatorname{Hom}_{\pi\text{-complete }O_E\text{-algebras}}(W_{O_E}(O_C^{\flat}),D) \\ &\cong \operatorname{Hom}_{\operatorname{perfect }\mathbb{F}_q\text{-algebras}}(O_C^{\flat},D^{\flat}) \\ &\cong \operatorname{Hom}_{\operatorname{perfect }\mathbb{F}_q\text{-algebras}}((O_C/(\pi))^{\flat},D^{\flat}) \,. \end{split}$$

In particular, the isomorphism $R^{\flat} \cong D^{\flat}$ lifts to a unique morphism $\mathbb{A}_{\inf} \to D$, as needed.

1.2 Interlude: The Ring $O_F[[z]]$

Since O_F is a perfect \mathbb{F}_q -algebra, we know that every element of $\mathbb{A}_{\inf} = W_{O_E}(O_F)$ has unique expression as a power series in π with coefficients in Teichmüller lifts of elements O_F . Although, the ring structure is vastly different from the ring of formal power series over O_F , we will see that \mathbb{A}_{\inf} and $O_F[[z]]$ share a variety of properties.

But let us first review some properties of the ring $O_F[[z]]$.

Definition 1.5. Let

$$O_F[[z]] := \left\{ \sum_{n=0}^{\infty} a_n z^n \mid a_n \in O_F \right\}$$

be the ring of formal power series over O_F .

As O_F is not discretely valued, O_F is non-noetherian and its maximal ideal satisfies $\mathfrak{m}_F^2 = \mathfrak{m}_F$. Using this, one can show that $O_F[[z]]$ has infinite Krull dimension.

Theorem 1.6 ([Arn73]). The ring $O_F[[z]]$ has infinite Krull dimension.

Nonetheless, one can make the prime spectrum of $O_F[[z]]$ more explicit. Of course, one has the zero ideal (0), as O_F is an integral domain, and one has the unique maximal ideal (\mathfrak{m}_F, z) , as $O_F[[z]]$ is a formal power series ring over the complete local ring (O_F, \mathfrak{m}_F) . Moreover, for each $a \in \mathfrak{m}_F$ and $f \in O_F[[z]]$, the series f(a) converges to a well-defined element of O_F . Thus, one obtains the evaluation morphisms

$$\operatorname{ev}_a : O_F[\![z]\!] \longrightarrow O_F, \qquad f(z) \longmapsto f(a)$$

for each $a \in \mathfrak{m}_F$. We claim that their kernels are the prime ideals (z-a) and that there are no other prime ideals not contained in the extension of the maximal ideal $\mathfrak{m}_F[[z]]$. Thus, $O_F[[z]]$ being of infinite Krull dimension comes down to the prime spectrum of the localisation $O_F[[z]]\mathfrak{m}_F[[z]]$ being of infinite Krull dimension.

Proposition 1.7. The spectrum of $O_F[[z]]$ is given by

Spec
$$(O_F[[z]]) = \{(0), (\mathfrak{m}_F, z)\} \cup \{(z - a) \mid a \in \mathfrak{m}_F\} \cup \operatorname{Spec}(O_F[[z]]_{\mathfrak{m}_F[[z]]})$$
.

PROOF. We use Weierstraß theory for formal power series rings over complete local rings to prove the claimed decomposition. First, the Weierstraß division theorem implies, that if $a \in \mathfrak{m}_F$ and $h \in O_F[[z]]$, then there exists $q \in O_F[[z]]$ and $r \in O_F$ so that h = q(z-a) + r. Second, the Weierstraß preparation theorem implies, that if $f = \sum_{n=0}^{\infty} a_n z^n \notin \mathfrak{m}_F[[z]]$, then f = ug with u a unit and g a distinguished polynomial of degree $d = \min\{n \mid a_n \in O_F^{\times}\}$, i.e. a monic polynomial of degree $d = \min\{n \mid a_n \in O_F^{\times}\}$ whose remaining coefficients are in \mathfrak{m}_F .

Observe that the above ideals are all prime. This is clear for the zero ideal (0), as $O_F[[z]]$ is an integral domain, and also for (\mathfrak{m}_F, z) , as the quotient $O_F[[z]]/(\mathfrak{m}_F, z)$ can be identified with the residue field of O_F . For the ideals (z-a) with $a \in \mathfrak{m}_F$, we note that these are the kernels of the valuation morphisms $\operatorname{ev}_a \colon O_F[[z]] \to O_F$, which can be seen using the Weierstraß division theorem. In particular, (z-a) is prime for all $a \in \mathfrak{m}_F$. Finally, the ideals in Spec $(O_F[[z]]_{\mathfrak{m}_F[[z]]})$ are prime by definition.

Now let \mathfrak{p} be a prime ideal of $O_F[[z]]$. We assume that $\mathfrak{p} \neq (0)$. We claim that if, furthermore, $\mathfrak{p} \nsubseteq \mathfrak{m}_F[[z]]$, then either there exists $a \in \mathfrak{m}_F$ such that $\mathfrak{p} = (z - a)$, or $\mathfrak{p} = (\mathfrak{m}_F, z)$.

By assumption, there exists $f = \sum_{n=0}^{\infty} a_n z^n \in \mathfrak{p}$ such that $f \notin \mathfrak{m}_F[[z]]$. Thus, by Weierstraß' preparation theorem, there exists a distinguished polynomial g of degree $d = \min\{n \mid a_n \in O_F^{\times}\}$ such that f = ug for some

unit u. As F is algebraically closed, g decomposes into linear factors and since g is distinguished all its root are elements in \mathfrak{m}_F . Since \mathfrak{p} is prime, $x-a\in\mathfrak{p}$ for some $a\in\mathfrak{m}_F$. If $\mathfrak{p}=(z-a)$, we are done. So suppose that $(x-a)\subsetneq\mathfrak{p}$. For $h\in\mathfrak{p}$ not a multiple of z-a, Weierstraß division yields h=q(z-a)+r with $r\in O_F$. Note that $r=f-q(z-a)\in\mathfrak{p}$. Now r cannot be a unit, as \mathfrak{p} is a prime ideal. Thus, $r\in\mathfrak{m}_F$. As F is algebraically closed, $r^{1/m}\in\mathfrak{m}_F$ exists for all $m\geq 1$. Moreover, $r^{1/m}\in\mathfrak{p}$ for all $m\geq 1$ since \mathfrak{p} is prime. Now let $b\in\mathfrak{m}_F$ be arbitrary. As $|b|\leq 1$, there exists m such that $|b|\leq |r^{1/m}|$. In particular, $|b/r^{1/m}|\leq 1$ and $b=(b/r^{1/m})r^{1/m}$ shows that $b\in\mathfrak{p}$. Thus, $(z-a,\mathfrak{m}_F)=(z,\mathfrak{m}_F)\subseteq\mathfrak{p}$, which shows that $\mathfrak{p}=(\mathfrak{m}_F,z)$ as (\mathfrak{m}_F,z) is maximal.

Finally, we given a geometric interpretation of the ring $O_F[[z]]$. For this, let

$$\mathbb{D}_F^{\circ} = \{ x \in F \mid |x| < 1 \}$$

be the open rigid analytic unit disk. Fix a pseudo-uniformiser $t \in \mathfrak{m}_F$. The sets

$$\mathbb{D}_F^{\circ}\left(t^{-1/m}\right) = \left\{x \in F \mid |x| < |t|^{1/m}\right\}$$

form an open admissible cover of \mathbb{D}_{E}° , thus

$$O(\mathbb{D}_F^{\circ}) = \varprojlim_{m} O\left(\mathbb{D}_F^{\circ}\left(t^{-1/m}\right)\right)$$

$$= \varprojlim_{m} \left\{ \sum_{n=0}^{\infty} a_n z^n \middle| |a_n||t|^{n/m} \to 0 \right\}$$

$$= \left\{ \sum_{n=0}^{\infty} a_n z^n \middle| |a_n|\rho^n \to 0 \text{ for all } \rho < 1 \right\}.$$

Note that if $f \in O_F[[z]]$, then $f \in O(\mathbb{D}_F^{\circ})$. Conversely, if $f \in O(\mathbb{D}_F^{\circ})$ is uniformly bounded by 1, then $f \in O_F[[z]]$. Thus, $O_F[[z]]$ is the ring of bounded rigid analytic functions on the open unit disk.

1.3 Basic Properties of \mathbb{A}_{inf}

We now go over some basic properties of \mathbb{A}_{inf} , mirroring our discussion of $O_F[[z]]$.

For starters, the ring \mathbb{A}_{inf} is a local domain, by virtue of being constructed as a ring of (ramified) Witt vectors. Moreover, \mathbb{A}_{inf} is of infinite Krull dimension as well.

Theorem 1.8 ([LL21]). The ring \mathbb{A}_{inf} has infinite Krull dimension.

There is an analogue of the function-theoretic interpretation we gave for $O_F[[z]]$. However, this uses the adic Fargues–Fontaine curve, which we will no introduce. Instead, we consider the following weak analogue.

Definition 1.9. We define

 $|Y|_{[0,\infty)} := \{I \subseteq \mathbb{A}_{\inf} \mid I \text{ is generated by a distinguished element}\}$

and set

$$|Y| := |Y|_{[0,\infty)} \setminus \{(\pi)\}.$$

Remark 1.10. The set |Y| will also be of interest when studying the possible untilts of F (cf. Remark 1.2). The distinguished elements appearing in Definition 1.9 admit a more explicit description. **Lemma 1.11.** A distinguished element $d \in \mathbb{A}_{inf}$ generates a proper ideal I = (d) if any only if $d = [a] + \pi u$ with $a \in \mathfrak{m}_F$ and $u \in \mathbb{A}_{inf}^{\times}$. Thus,

$$|Y|_{[0,\infty)}\coloneqq\left\{(u\pi-[a])\,|\,u\in\mathbb{A}_{\inf}^\times,a\in\mathfrak{m}_F\right\}\;.$$

PROOF. Recall that we can write $d \in \mathbb{A}_{inf} = W_{O_E}(O_F)$ as $d = \sum_{n=0}^{\infty} [d_n] \pi^n$. It is then known, that d is distinguished if and only if $d_1 \in O_F^{\times}$. Moreover, d is a unit, hence the ideal I = (d) is the unit ideal, if and only if $d_0 \in O_F^{\times}$. So if I = (d) is a proper ideal and d is required to be distinguished, then $d_0 \in \mathfrak{m}_F$ and $d_1 \in O_F^{\times}$. Thus, we may write

$$d = \sum_{n=0}^{\infty} [d_i] \pi^n = [d_0] + \pi \sum_{n=0}^{\infty} [d_{n+1}] \pi^n.$$

Now let $a = -d_0$ and $u = \sum_{n=0}^{\infty} [u_n] \pi^n$ for $u_n = d_{n+1}$. As $d_1 \in O_F^{\times}$ by assumption, $u \in \mathbb{A}_{inf}$. Moreover, one checks that [-a] = -[a]. Therefore, we can write $d = u\pi - [a]$, as claimed.

Conversely, any such element is distinguished and not a unit, hence generates a proper ideal $I \in |Y|_{[0,\infty)}$.

We close this section by recalling, that for every choice $\pi^{\flat} = (\pi, \pi^{1/q}, ...)$, let $\xi = \pi - [\pi^{\flat}]$. Then there is an isomorphism

$$\mathbb{A}_{\inf}/(\xi) = \mathbb{A}_{\inf}/(\pi - [\pi^{\flat}]) \cong O_C$$
.

This realises O_C as a perfectoid O_E -algebra associated to the perfect prism $(\mathbb{A}_{inf}, (\xi))$.

2 The De Rham and Crystalline Period Rings

2.1 The Integral De Rham Period Ring B_{dR}^+

We now introduce the de Rham period ring, constructed from the perfect prism $(\mathbb{A}_{inf}, (\xi))$.

Definition 2.1. We define the integral de Rham period ring as

$$\mathbf{B}_{\mathbf{dR}}^+ := \mathbb{A}_{\inf}[\pi^{-1}]^{\wedge}_{\varepsilon}.$$

The field $B_{dR} = \operatorname{Frac}(B_{dR}^+)$ is called the **de Rham period ring**, or **Fontaine's field of** *p***-adic periods for** *C***. Since B_{dR}^+ is the \xi-adic completion of A_{\inf}[\pi^{-1}], it is a \xi-adically complete ring so that**

$$\mathrm{B}^+_{\mathrm{dR}}/(\xi)\cong\mathbb{A}_{\mathrm{inf}}[\pi^{-1}]/(\xi)\cong C\,.$$

On the other hand, we can endow each $\mathbb{A}_{\inf}[\pi^{-1}]/(\xi^n)$ with a unique topology such that $\mathbb{A}_{\inf}/(\xi^n)$ is open in the π -adic topology. The resulting inverse limit topology on \mathbb{B}_{dR}^+ is called the **canonical topology**.

Proposition 2.2. The natural morphism $\mathbb{A}_{inf} \to \mathbb{B}_{dR}^+$ is injective.

PROOF. As \mathbb{A}_{\inf} is $(\pi, [\pi^b])$ -complete and $(\xi) \subseteq (\pi, [\pi^b])$ is finitely generated, \mathbb{A}_{\inf} is ξ -adically complete. Thus, it suffices to show that the natural localisation maps $\mathbb{A}_{\inf}/(\xi^n) \to \mathbb{A}_{\inf}[\pi^{-1}]/(\xi^n)$ are injective. Indeed, the map $\mathbb{A}_{\inf} \to \mathbb{B}_{dR}^+$ arises as the projective limit of the maps $\mathbb{A}_{\inf}/(\xi^n) \to \mathbb{A}_{\inf}[\pi^{-1}]/(\xi^n)$ and \mathbb{A}_{\inf} is left-exact.

Since $\xi \in \mathbb{A}_{inf}$ is not a zero divisor (\mathbb{A}_{inf} being an integral domain) and O_C is π -torsionfree, using induction and the short exact sequences

$$0 \longrightarrow (\xi^{n-1})/(\xi^n) \longrightarrow \mathbb{A}_{\inf}/(\xi^n) \longrightarrow \mathbb{A}_{\inf}/(\xi^{n-1}) \longrightarrow 0$$

we see that $\mathbb{A}_{\inf}/(\xi^n)$ is π -torsionfree for all $n \ge 1$. In particular, $\mathbb{A}_{\inf}/(\xi^n) \to \mathbb{A}_{\inf}[\pi^{-1}]/(\xi^n)$ is injective.

Proposition 2.3. The local ring B_{dR}^+ is a discrete valuation ring.

Proof. As B_{dR}^+ is the ξ -adic completion of $\mathbb{A}_{\inf}[\pi^{-1}]$ and $\mathbb{A}_{\inf}[\pi^{-1}]/(\xi) \cong C$ is a field, hence, in particular noetherian, one can show that B_{dR}^+ is noetherian. Moreover, B_{dR}^+ is a local domain with maximal ideal generated by ξ . Thus, by Krull Hauptidealsatz, B_{dR}^+ is of Krull dimension 1. Thus, B_{dR}^+ is a discrete valuation ring. \square

Remark 2.4. As B_{dR}^+ is a complete discrete valuation ring whose residue field C is of characteristic 0, Cohen's structure theorem implies that B_{dR}^+ is abstractly isomorphic to C[[z]]. Moreover, using that B_{dR}^+ is a discrete valuation ring, one can deduce that the localisation $(A_{inf})_{(\xi)}$ is a discrete valuation ring as well. As this is not needed anywhere, we omit the proof.

2.2 The Integral Crystalline Period Ring ${\bf B}_{\rm cris}^+$

We now introduce the crystalline period ring, constructed from the perfect prism $(\mathbb{A}_{inf}, (\xi))$ as well. However, for this we restrict to the case $E = \mathbb{Q}_p$ and $\pi = p$.

We recall the notions associated to divided power structures, which are foundational to the theory of crystalline cohomology.

Definition 2.5. Let A be a ring and $I \le A$ an ideal. A **divided power structure on I**, or **PD-structure**, is a collection of maps $(\gamma_n : I \to A)_{n \ge 0}$ such that

- (i) $\gamma_0(x) = 1$, $\gamma_1(x) = x$ and $\gamma_n(x) \in I$ for all $x \in I$ and $n \ge 2$,
- (ii) $\gamma_n(x+y) = \sum_{i+j=n} \gamma_i(x) \gamma_j(y)$ for all $x, y \in I$,
- (iii) $\gamma_n(ax) = a^n \gamma_n(x)$ for all $a \in A, x \in I$,
- (iv) $\gamma_n(x)\gamma_m(y) = \frac{(n+m)!}{n!m!}\gamma_{n+m}(xy)$ for all $x, y \in I$,
- (v) $\gamma_n(\gamma_m(x)) = \frac{(nm)!}{n!m!^n} \gamma_{nm}(x)$ for all $x \in I$.

A divided power ideal of A, or **PD-ideal**, is a tuple (I, γ) where $I \le A$ is an ideal and and $\gamma = (\gamma_n)_n$ is a PD-structure on I. A **divided power algebra**, or **PD-algebra**, is a triple (A, I, γ) where A is a ring and (I, γ) is a PD-ideal of A.

A **morphism** of PD-algebras $(A, I, \gamma) \to (B, J, \delta)$ is a morphism of rings $f: A \to B$ such that $f(I) \subseteq J$ and such that $\delta_n f = f \gamma_n$ for all $n \ge 0$.

Definition 2.6. Let (A, I, γ) be a PD-algebra. Let B be an A-algebra and (J, δ) a PD-ideal in B. We say that γ and δ are **compatible**, if there is a PD-algebra structure $(B, IB, \overline{\gamma})$ together with a morphism of PD-algebras $(A, I, \gamma) \to (B, IB, \overline{\gamma})$ such that $\overline{\gamma}|_{IB \cap J} = \delta$.

We recall the two standard examples of PD-structures and PD-envelopes:

(i) Let A be a \mathbb{Q}_p -algebra and let $I \leq A$ be any ideal. The maps

$$\gamma_n \colon I \longrightarrow A, \qquad x \mapsto \frac{x^n}{n!}$$

define the unique PD-structure on *I*.

(ii) Let A be a \mathbb{Z}_p -algebra and let I = (p). The maps

$$\gamma_n^{\text{can}} : I \to A, \qquad pa \mapsto \frac{p^{n-1}}{n!}(pa^n)$$

define the **canonical PD-structure on** (p).

(iii) Let (A, I, γ) be a PD-algebra and let B be an A-algebra with an ideal $J \leq B$. Then there exists a B-algebra $D_{B,\gamma}(J)$, called the **PD-envelope of** (B, J) **relative to** (A, I, γ) , with a PD-ideal $(\overline{J}, [-])$ such that $JD_{B,\gamma}(B) \subseteq \overline{J}$ and such that [-] is compatible with γ . The PD-algebra $(D_{J,\gamma}(B), \overline{J}, [-])$ is universal among B-algebras C containing a PD-ideal (K, δ) such that $JC \subseteq K$ and such that δ is compatible with γ .

When working in characteristic p or mixed characteristic, instead of considering π -adic pro-infinitesimal thickening—as we did when defining \mathbb{A}_{inf} —we now consider π -adic PD-thickenings for defining \mathbb{A}_{cris} .

Definition 2.7. Let R be a p-complete \mathbb{Z}_p -algebra. A p-adic PD-thickening of R is a triple $(D, D \to R, (\gamma_n)_{n \ge 0})$ where D is p-complete, $D \to R$ is a surjection, and $(\gamma_n)_{n \ge 0}$ is a PD-structure on $J = \ker(D \to R)$ compatible with the canonical PD-structure on (p).

Definition 2.8. We define

$$\mathbb{A}_{\mathbf{cris}} \coloneqq D_{\mathbb{A}_{\mathrm{inf}}, \gamma^{\mathrm{can}}} \left((\xi) \right)_{p}^{\wedge}$$

as the *p*-completion of the PD-envelope of $(\mathbb{A}_{inf}, (\xi))$ relative to $(\mathbb{Z}_p, (p), \gamma^{can})$.

Remark 2.9. One can show, that

$$\mathbb{A}_{\mathrm{cris}} \cong \mathrm{H}^0_{\mathrm{cris}}(\mathrm{Spec}(O_C)/\mathbb{Z}_p) \cong \mathrm{H}^0_{\mathrm{cris}}(\mathrm{Spec}(O_C/(p))/\mathbb{Z}_p)$$

where $H^0_{\text{cris}}(-/\mathbb{Z}_p)$ denotes crystalline cohomology.

Denote by $D_{\mathbb{Z}_p[x]}(x)$ the PD-envelope of the \mathbb{Z}_p -algebra $\mathbb{Z}_p[x]$ and the ideal (x). The canonical morphism $\mathbb{Z}_p[x] \to \mathbb{A}_{\inf}, x \mapsto \xi$ gives rise to an isomorphism

$$\mathbb{A}_{\mathrm{cris}} \cong \mathbb{A}_{\mathrm{inf}} \widehat{\otimes}_{\mathbb{Z}_p[x]} D_{\mathbb{Z}_p[x]} ((x))_p^{\wedge}.$$

Moreover,

$$D_{\mathbb{Z}_p[x]}(x))_p^{\wedge} \cong \widehat{\bigoplus}_{n\geq 0} \mathbb{Z}_p \cdot \frac{x^n}{n!} \cong (\mathbb{Z}_p[y_0, y_1, y_2, \dots]/(y_0 - x, y_1^p - py_0, y_2^p - py_1, \dots))_p^{\wedge}$$

is the free p-complete PD-algebra on one generator. In particular, we obtain

$$\mathbb{A}_{\mathrm{cris}}/(p)\cong O_C/(p)\otimes_{\mathbb{F}_p}\mathbb{F}_p[y_1,y_2,\dots]/(y_1^p,y_2^p,\dots)$$

is a very non-noetherian and very non-perfect ring.

Denote by $\left[\frac{\xi^n}{n!}\right] \in \mathbb{A}_{cris}$ the *n*-th divided power of ξ . Every element of \mathbb{A}_{cris} can be written as a power series

$$\sum_{n\geq 0} a_n \left[\frac{\xi^n}{n!} \right]$$

with $a_n \in \mathbb{A}_{inf}$ converging to 0 in the p-adic topology. Note that this expression is not necessarily unique.

Definition 2.10. We define the **integral crystalline period ring** as

$$\mathbf{B}_{\mathbf{cris}}^+ := \mathbb{A}_{\mathbf{cris}}[p^{-1}].$$

Remark 2.11. The ring B_{cris} , Fontaine's ring of crystalline periods, is constructed as a localisation of B_{cris} . Lemma 2.12. The natural morphism $A_{inf} \to B_{dR}^+$ extends to an injection

$$B_{cris}^+ \longrightarrow B_{dR}^+$$
.

PROOF. Note that B_{dR}^+ is a \mathbb{Q}_p -algebra by construction, hence the ideal (ξ) admits a unique PD-structure. Thus, the natural morphism $\mathbb{A}_{\inf} \to B_{dR}^+$ induces a morphism $D_{\mathbb{A}_{\inf},\gamma^{\operatorname{can}}}((\xi)) \to B_{dR}^+$ by definition. As B_{dR}^+ is complete with respect to the canonical topology and $\mathbb{A}_{\operatorname{cris}} = D_{\mathbb{A}_{\inf},\gamma^{\operatorname{can}}}((\xi))_p^{\wedge}$, it suffices to show that the morphism

$$D_{\mathbb{A}_{\mathrm{inf}},\gamma^{\mathrm{can}}}((\xi)) \longrightarrow \mathrm{B}_{\mathrm{dR}}^+$$

is continuous with respect to the p-adic topology on the domain and the canonical topology on the codomain. Continuity can be checked on the finite level, so we consider the induced map

$$D_{\mathbb{A}_{\inf},\gamma^{\operatorname{can}}}((\xi)) \longrightarrow \mathbb{A}_{\inf}[p^{-1}]/(\xi^n)$$
.

The image of this map is contained in $\frac{1}{(n-1)!}\mathbb{A}_{\inf}/(\xi^n)$ and since $\mathbb{A}_{\inf}/(\xi^n)$ is open by construction, this shows continuity. Thus, the natural morphism extends to a morphism

$$\mathbb{A}_{cris} \longrightarrow B_{dR}^+$$

and as p is invertible in B_{dR}^+ , we obtain a morphism

$$B_{cris}^+ \longrightarrow B_{dR}^+ \, .$$

It remains to check that this morphism is injective. Note that the axioms of the divided powers imply that

$$\xi^{m} \left[\frac{\xi^{n}}{n!} \right] = \frac{(n+m)!}{n!} \left[\frac{\xi^{n+m}}{(n+m)!} \right].$$

In particular, if we can rewrite any finite sum

$$\sum_{n>0}^{\infty} a_n \left[\frac{\xi^n}{n!} \right] = \sum_{n>0}^{\infty} b_n \left[\frac{\xi^n}{n!} \right]$$

so that if $b_n \neq 0$, then $b_n \notin (\xi)$. By taking limits, we may assume that any element $x \in \mathbb{A}_{cris}$ is of the form

$$x = \sum_{n \ge 0} a_n \left[\frac{\xi^n}{n!} \right]$$

so that if $a_n \neq 0$, then $a_n \notin (\xi)$. If $x \neq 0$, then there is a minimal n so that $a_n \neq 0$. In particular, there is a minimal n so that $a_n \notin (\xi)$. Thus, the ξ -adic valuation of x is finite and, hence, the image of x in B_{dR}^+ is non-zero. \Box

Appendix: The Rings of p-adic Hodge Theory

We briefly go over the rings appearing in the quote at the start.

Let us start with the human rings:

- (i) \mathbb{Q}_p is the field of *p*-adic numbers,
- (ii) \mathbb{Z}_p is the ring of p-adic integers, the ring of integers of \mathbb{Q}_p ,
- (iii) \mathbb{F}_p is the finite field with p elements, the residue field of \mathbb{Z}_p ,
- (iv) $\overline{\mathbb{Q}}_p$ is an algebraic closure of \mathbb{Q}_p ,
- (v) $\overline{\mathbb{F}}_p$ is an algebraic closure of \mathbb{F}_p ,
- (vi) \mathbb{C}_p is the completion of $\overline{\mathbb{Q}}_p$,
- (vii) $O_{\mathbb{C}_p}$ is the ring of integers of \mathbb{C}_p ,
- (viii) $\mathbb{Q}_p^{\mathrm{unr}}$ is the maximal unramified subextension of $\overline{\mathbb{Q}}_p$, and
- (ix) B_{HT} the *Hodge-Tate period ring*, is the ring of Laurent polynomials $B_{HT} = \mathbb{C}_p[t^{\pm}]$ over \mathbb{C}_p .

The dwarvish rings are the following:

- (i) \tilde{A} is the ring of Witt vectors $\tilde{A} = W(\mathbb{C}_p^{\flat})$ of \mathbb{C}_p^{\flat} ,
- (ii) $\mathbb{E}_{\mathbb{Q}_p}$ is the subfield $\mathbb{F}_p(\varepsilon 1)$ of \mathbb{C}_p^{\flat} of norms of the cyclotomic extension $\mathbb{Q}_p(\mu_{p^{\infty}})$,
- (iii) $A_{\mathbb{Q}_p}$ is the closure of $\mathbb{Z}_p[\pi^{\pm 1}]$, where $\pi = [\varepsilon] 1$, in \tilde{A} ,
- (iv) $B_{\mathbb{Q}_p}$ is the ring $B_{\mathbb{Q}_p} = A_{\mathbb{Q}_p}[p^{-1}]$,
- (v) E is a separable closure of E,
- (vi) A is the unique p-saturated p-complete subring of \tilde{A} containing $A_{\mathbb{Q}_p}$, and
- (vii) B is the ring $B = A[p^{-1}]$.

Then there are the *elvish rings*:

- (i) B_{cris} is the *crystalline period ring*, as constructed in Section 2.2,
- (ii) B_{st} is the *semistable period ring*, which as an abstract ring is $B_{st} = B_{cris}[u]$ for $u = \log\left(\frac{[p^p]}{p}\right)$, and
- (iii) B_{dR} is the *de Rham period ring*, as constructed in Section 2.1.

A finally, of course, the one ring to rule them all:

(i) \mathbb{A}_{inf} is Fontaine's first period ring, as constructed in Section 1.

References

- [Ans19] Johannes Anschütz, *Lectures on the Fargues–Fontaine Curve*, 2019, Available at: https://janschuetz.perso.math.cnrs.fr.
- [Arn73] Jimmy T. Arnold, *Prime ideals in power series rings*, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lectures Notes in Math., vol. 311, Springer, Berlin-New York, 1973, pp. 17–25.
- [BO78] Pierre Berthelot and Arthur Ogus, *Notes on crystalline cohomology*, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1978.
- [Col19] Pierre Colmez, Le programme de Fontaine, Enseign. Math. 65 (2019), no. 3-4, 487-531.
- [FF18] Laurent Fargues and Jean-Marc Fontaine, *Courbes et fibrés vectoriels en théorie de Hodge p-adique*, Astérisque (2018), no. 406, xiii+382.
- [LL21] Jaclyn Lang and Judith Ludwig, A_{inf} is infinite dimensional, J. Inst. Math. Jussieu **20** (2021), no. 6, 1983–1989.
- [Lur18] Jacob Lurie, *The Fargues-Fontaine Curve*, 2018, Available at: https://www.math.ias.edu/~lurie/.