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Introduction

Classical Hodge theory states that for a smooth projective complex variety X, the singular cohomology of
its analytification Xan can be computed in terms of its Hodge cohomology, after base changing the singular
cohomology to the complex numbers. This generalises to smooth proper K-schemes, for K/Qp finite, where the

the Hodge–Tate decomposition shows that after base changing to a completed algebraic closure C = K̂, the étale
cohomology of XK can be identified with the Hodge cohomology of X base changed to C. This can even be done
equivariantly for the action of the absolute Galois group GK of K, by taking Tate twists into account for the Hodge
cohomology.

The comparison theorems of p-adic Hodge theory aim at establishing analogues results for the various other
cohomology theories associated to X and related geometric objects. However, it typically no longer suffices to
just base change the étale cohomology of X to C. Instead, one introduces various period rings allowing for these
comparison results to be hold. Two of the central cases are the de Rham period ring BdR, for the algebraic de
Rham cohomology of X, and the crystalline period ring Bcris, for the crystalline cohomology of X0, the reduction
of a smooth proper integral model X of X (in the case where X has good reduction). The underlying integral
period rings B+

dR and B+
cris can both be constructed from the same source: Fontaine’s first period ring Ainf .

Plan: • define Fontaine’s first period ring Ainf

• compare Ainf with a ring of formal power series OF⟦z⟧

• define and study the integral de Rham period ring B+
dR

• define and study the integral crystalline period ring B+
cris

Notation: Let p be a fixed prime. Let E/Qp denote a finite field extension with ring of integers OE . Fix a
uniformiser π ∈ mE so that the residue field is OE/(π) = Fq with q = p f . Let C be a complete nonarchimedean
algebraically closed extension of E, with ring of integers OC = {x ∈ C | |x| ≤ 1} ⊆ C, and maximal ideal
mC = {x ∈ OC | |x| < 1} ≤ OC .
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1 Fontaine’s First Period Ring Ainf

1.1 Defining Ainf

We have fixed a complete nonarchimedean algebraically closed extension C of E. We denote by OF = O♭C the tilt
of its ring of integers and by F = Frac(O♭C) the fraction field of its tilt. Last talk, we saw that OC is a perfectoid
OE-algebra and that C♭ is an algebraically closed extension of O♭E = Fq. Relative our choice of C, we make the
following definition.

Definition 1.1. We define Fontaine’s first period ring by

Ainf B WOE (OF) . ⌟

Remark 1.2. Instead of fixing C as a complete nonarchimedean algebraically closed extension of E, we could
have fixed F as a complete nonarchimedean algebraically closed extension of Fq. In this case, we need to choose
C as a suitable untilt of F, which will be the topic of the next talk. ⌟

Let us briefly explain the notation for Ainf .

Definition 1.3. Let R be a π-complete OE-algebra. A surjection D→ R of OE-algebras with kernel I so that D is
(I, π)-adically complete is called a π-adic pro-infinitesimal thickening of R. ⌟

Proposition 1.4. Let R ∈ {OC ,OC/(π)}. Then Ainf is the universal π-adic pro-infinitesimal thickening of R, i.e.

for each π-adic pro-infinitesimal thickening D→ R, there exists a unique morphism Ainf → D over R.

Proof. To prove the proposition, we recall that there is an adjunction

Homπ-complete OE -algebras(WOE (−),−) � Homperfect Fq-algebras(−, (−)♭)

with tilting (−)♭ as right-adjoint and taking ramified Witt vectors WOE (−) as left-adjoint.
We first check, that Ainf is a π-adic pro-infinitesimal thickening of R. While proving, that OC is a perfectoid
OE-algebra, it was established that the counit of the adjunction yields a surjection Ainf → OC with kernel I

generated by ξ = π− [π♭]. The (I, π)-adic completeness of Ainf follows from Ainf/(I, π) � OC/(π) and the π-adic
completeness of OC . If we consider the induced surjection Ainf → OC/(π) with kernel J, we have (J, π) = (I, π).
Thus, Ainf → R is a π-adic pro-infinitesimal thickening of R.

Now let D→ R be a π-adic pro-infinitesimal thickening of R. We then compute

R♭ � (R/(π))♭ � (D/(I, π))♭ � D♭ .

Thus, there is a unique morphism Ainf → D inducing the isomorphism D♭ � R♭ along the bijections

Homπ-complete OE -algebras(Ainf , D) = Homπ-complete OE -algebras(WOE (O♭C), D)

� Homperfect Fq-algebras(O♭C , D♭)

� Homperfect Fq-algebras((OC/(π))♭, D♭) .

In particular, the isomorphism R♭ � D♭ lifts to a unique morphism Ainf → D, as needed. □
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1.2 Interlude: The Ring OF⟦z⟧

Since OF is a perfect Fq-algebra, we know that every element of Ainf = WOE (OF) has unique expression as
a power series in π with coefficients in Teichmüller lifts of elements OF . Although, the ring structure is vastly
different from the ring of formal power series over OF , we will see that Ainf and OF⟦z⟧ share a variety of
properties.

But let us first review some properties of the ring OF⟦z⟧.

Definition 1.5. Let

OF⟦z⟧ B

{
∞∑

n=0

anzn

∣∣∣∣∣ an ∈ OF

}
be the ring of formal power series over OF. ⌟

As OF is not discretely valued, OF is non-noetherian and its maximal ideal satisfies m2
F = mF . Using this, one

can show that OF⟦z⟧ has infinite Krull dimension.

Theorem 1.6 ([Arn73]). The ring OF⟦z⟧ has infinite Krull dimension. □

Nonetheless, one can make the prime spectrum of OF⟦z⟧ more explicit. Of course, one has the zero ideal (0), as
OF is an integral domain, and one has the unique maximal ideal (mF , z), as OF⟦z⟧ is a formal power series ring
over the complete local ring (OF ,mF). Moreover, for each a ∈ mF and f ∈ OF⟦z⟧, the series f (a) converges to a
well-defined element of OF . Thus, one obtains the evaluation morphisms

eva : OF⟦z⟧ −→ OF , f (z) 7−→ f (a)

for each a ∈ mF . We claim that their kernels are the prime ideals (z − a) and that there are no other prime ideals
not contained in the extension of the maximal ideal mF⟦z⟧. Thus, OF⟦z⟧ being of infinite Krull dimension comes
down to the prime spectrum of the localisation OF⟦z⟧mF⟦z⟧ being of infinite Krull dimension.

Proposition 1.7. The spectrum of OF⟦z⟧ is given by

Spec (OF⟦z⟧) = {(0), (mF , z)} ∪ {(z − a) | a ∈ mF} ∪ Spec
(
OF⟦z⟧mF⟦z⟧

)
.

Proof. We use Weierstraß theory for formal power series rings over complete local rings to prove the claimed
decomposition. First, the Weierstraß division theorem implies, that if a ∈ mF and h ∈ OF⟦z⟧, then there
exists q ∈ OF⟦z⟧ and r ∈ OF so that h = q(z − a) + r. Second, the Weierstraß preparation theorem implies,
that if f =

∑∞
n=0 anzn < mF⟦z⟧, then f = ug with u a unit and g a distinguished polynomial of degree

d = min
{

n | an ∈ O
×
F

}
, i.e. a monic polynomial of degree d = min

{
n | an ∈ O

×
F

}
whose remaining coefficients

are in mF .
Observe that the above ideals are all prime. This is clear for the zero ideal (0), as OF⟦z⟧ is an integral domain,

and also for (mF , z), as the quotient OF⟦z⟧/(mF , z) can be identified with the residue field of OF . For the ideals
(z − a) with a ∈ mF , we note that these are the kernels of the valuation morphisms eva : OF⟦z⟧→ OF , which can
be seen using the Weierstraß division theorem. In particular, (z − a) is prime for all a ∈ mF . Finally, the ideals in
Spec

(
OF⟦z⟧mF⟦z⟧

)
are prime by definition.

Now let p be a prime ideal of OF⟦z⟧. We assume that p , (0). We claim that if, furthermore, p ⊈ mF⟦z⟧, then
either there exists a ∈ mF such that p = (z − a), or p = (mF , z).

By assumption, there exists f =
∑∞

n=0 anzn ∈ p such that f < mF⟦z⟧. Thus, by Weierstraß’ preparation
theorem, there exists a distinguished polynomial g of degree d = min

{
n | an ∈ O

×
F

}
such that f = ug for some
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unit u. As F is algebraically closed, g decomposes into linear factors and since g is distinguished all its root
are elements in mF . Since p is prime, x − a ∈ p for some a ∈ mF . If p = (z − a), we are done. So suppose that
(x − a) ⊊ p. For h ∈ p not a multiple of z − a, Weierstraß division yields h = q(z − a) + r with r ∈ OF . Note that
r = f − q(z − a) ∈ p. Now r cannot be a unit, as p is a prime ideal. Thus, r ∈ mF . As F is algebraically closed,
r1/m ∈ mF exists for all m ≥ 1. Moreover, r1/m ∈ p for all m ≥ 1 since p is prime. Now let b ∈ mF be arbitrary.
As |b| ≤ 1, there exists m such that |b| ≤ |r1/m|. In particular, |b/r1/m| ≤ 1 and b = (b/r1/m)r1/m shows that b ∈ p.
Thus, (z − a,mF) = (z,mF) ⊆ p, which shows that p = (mF , z) as (mF , z) is maximal. □

Finally, we given a geometric interpretation of the ring OF⟦z⟧. For this, let

D◦F = {x ∈ F | |x| < 1}

be the open rigid analytic unit disk. Fix a pseudo-uniformiser t ∈ mF . The sets

D◦F

Ä
t−1/m

ä
=

{
x ∈ F

∣∣∣ |x| < |t|1/m}
form an open admissible cover of D◦F , thus

O(D◦F) = lim
←−−m

O
Ä

D◦F

Ä
t−1/m

ää
= lim
←−−m

{
∞∑

n=0

anzn

∣∣∣∣∣ |an||t|n/m → 0

}

=

{
∞∑

n=0

anzn

∣∣∣∣∣ |an|ρ
n → 0 for all ρ < 1

}
.

Note that if f ∈ OF⟦z⟧, then f ∈ O(D◦F). Conversely, if f ∈ O(D◦F) is uniformly bounded by 1, then f ∈ OF⟦z⟧.
Thus, OF⟦z⟧ is the ring of bounded rigid analytic functions on the open unit disk.

1.3 Basic Properties of Ainf

We now go over some basic properties of Ainf , mirroring our discussion of OF⟦z⟧.
For starters, the ring Ainf is a local domain, by virtue of being constructed as a ring of (ramified) Witt vectors.

Moreover, Ainf is of infinite Krull dimension as well.

Theorem 1.8 ([LL21]). The ring Ainf has infinite Krull dimension. □

There is an analogue of the function-theoretic interpretation we gave for OF⟦z⟧. However, this uses the adic
Fargues–Fontaine curve, which we will no introduce. Instead, we consider the following weak analogue.

Definition 1.9. We define

|Y|[0,∞) B
{

I ⊊Ainf | I is generated by a distinguished element
}

and set
|Y| B |Y |[0,∞) \ {(π)} . ⌟

Remark 1.10. The set |Y | will also be of interest when studying the possible untilts of F (cf. Remark 1.2). ⌟

The distinguished elements appearing in Definition 1.9 admit a more explicit description.
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Lemma 1.11. A distinguished element d ∈Ainf generates a proper ideal I = (d) if any only if d = [a] + πu with

a ∈ mF and u ∈Ainf
×. Thus,

|Y |[0,∞) B
{

(uπ − [a]) | u ∈A×inf , a ∈ mF
}

.

Proof. Recall that we can write d ∈ Ainf = WOE (OF) as d =
∑∞

n=0[dn]πn. It is then known, that d is
distinguished if and only if d1 ∈ O

×
F . Moreover, d is a unit, hence the ideal I = (d) is the unit ideal, if and only if

d0 ∈ O
×
F . So if I = (d) is a proper ideal and d is required to be distinguished, then d0 ∈ mF and d1 ∈ O

×
F . Thus,

we may write

d =
∞∑

n=0

[di]πn = [d0] + π
∞∑

n=0

[dn+1]πn .

Now let a = −d0 and u =
∑∞

n=0[un]πn for un = dn+1. As d1 ∈ O
×
F by assumption, u ∈ Ainf . Moreover, one

checks that [−a] = −[a]. Therefore, we can write d = uπ − [a], as claimed.
Conversely, any such element is distinguished and not a unit, hence generates a proper ideal I ∈ |Y |[0,∞). □

We close this section by recalling, that for every choice π♭ = (π, π1/q, . . . ), let ξ = π − [π♭]. Then there is an
isomorphism

Ainf/(ξ) = Ainf/(π − [π♭]) � OC .

This realises OC as a perfectoid OE-algebra associated to the perfect prism (Ainf , (ξ)).

2 The De Rham and Crystalline Period Rings

2.1 The Integral De Rham Period Ring B+

dR

We now introduce the de Rham period ring, constructed from the perfect prism (Ainf , (ξ)).

Definition 2.1. We define the integral de Rham period ring as

B+
dR BAinf[π−1]∧ξ .

The field BdR = Frac(B+
dR) is called the de Rham period ring, or Fontaine’s field of p-adic periods for C. ⌟

Since B+
dR is the ξ-adic completion of Ainf[π−1], it is a ξ-adically complete ring so that

B+
dR/(ξ) �Ainf[π−1]/(ξ) � C .

On the other hand, we can endow each Ainf[π−1]/(ξn) with a unique topology such that Ainf/(ξn) is open in the
π-adic topology. The resulting inverse limit topology on B+

dR is called the canonical topology.

Proposition 2.2. The natural morphism Ainf → B+
dR is injective.

Proof. As Ainf is (π, [π♭])-complete and (ξ) ⊆ (π, [π♭]) is finitely generated, Ainf is ξ-adically complete. Thus,
it suffices to show that the natural localisation maps Ainf/(ξn)→Ainf[π−1]/(ξn) are injective. Indeed, the map
Ainf → B+

dR arises as the projective limit of the maps Ainf/(ξn)→Ainf[π−1]/(ξn) and lim
←−−

is left-exact.
Since ξ ∈Ainf is not a zero divisor (Ainf being an integral domain) and OC is π-torsionfree, using induction

and the short exact sequences

0 (ξn−1)/(ξn) Ainf/(ξn) Ainf/(ξn−1) 0
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we see that Ainf/(ξn) is π-torsionfree for all n ≥ 1. In particular, Ainf/(ξn)→Ainf[π−1]/(ξn) is injective. □

Proposition 2.3. The local ring B+
dR is a discrete valuation ring.

Proof. As B+
dR is the ξ-adic completion of Ainf[π−1] and Ainf[π−1]/(ξ) � C is a field, hence, in particular

noetherian, one can show that B+
dR is noetherian. Moreover, B+

dR is a local domain with maximal ideal generated
by ξ. Thus, by Krull Hauptidealsatz, B+

dR is of Krull dimension 1. Thus, B+
dR is a discrete valuation ring. □

Remark 2.4. As B+
dR is a complete discrete valuation ring whose residue field C is of characteristic 0, Cohen’s

structure theorem implies that B+
dR is abstractly isomorphic to C⟦z⟧. Moreover, using that B+

dR is a discrete
valuation ring, one can deduce that the localisation (Ainf)(ξ) is a discrete valuation ring as well. As this is not
needed anywhere, we omit the proof. ⌟

2.2 The Integral Crystalline Period Ring B+

cris

We now introduce the crystalline period ring, constructed from the perfect prism (Ainf , (ξ)) as well. However, for
this we restrict to the case E = Qp and π = p.

We recall the notions associated to divided power structures, which are foundational to the theory of crystalline
cohomology.

Definition 2.5. Let A be a ring and I ≤ A an ideal. A divided power structure on I, or PD-structure, is a
collection of maps (γn : I → A)n≥0 such that

(i) γ0(x) = 1, γ1(x) = x and γn(x) ∈ I for all x ∈ I and n ≥ 2,

(ii) γn(x + y) =
∑

i+ j=n γi(x)γ j(y) for all x, y ∈ I,

(iii) γn(ax) = anγn(x) for all a ∈ A, x ∈ I,

(iv) γn(x)γm(y) = (n+m)!
n!m! γn+m(xy) for all x, y ∈ I,

(v) γn(γm(x)) = (nm)!
n!m!n γnm(x) for all x ∈ I.

A divided power ideal of A, or PD-ideal, is a tuple (I, γ) where I ≤ A is an ideal and and γ = (γn)n is a
PD-structure on I. A divided power algebra, or PD-algebra, is a triple (A, I, γ) where A is a ring and (I, γ) is a
PD-ideal of A.

A morphism of PD-algebras (A, I, γ)→ (B, J, δ) is a morphism of rings f : A→ B such that f (I) ⊆ J and such
that δn f = fγn for all n ≥ 0. ⌟

Definition 2.6. Let (A, I, γ) be a PD-algebra. Let B be an A-algebra and (J, δ) a PD-ideal in B. We say that
γ and δ are compatible, if there is a PD-algebra structure (B, IB, γ) together with a morphism of PD-algebras
(A, I, γ)→ (B, IB, γ) such that γ|IB∩J = δ. ⌟

We recall the two standard examples of PD-structures and PD-envelopes:

(i) Let A be a Qp-algebra and let I ≤ A be any ideal. The maps

γn : I −→ A, x 7→
xn

n!

define the unique PD-structure on I.
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(ii) Let A be a Zp-algebra and let I = (p). The maps

γcan
n : I → A, pa 7→

pn−1

n!
(pan)

define the canonical PD-structure on (p).

(iii) Let (A, I, γ) be a PD-algebra and let B be an A-algebra with an ideal J ≤ B. Then there exists a B-
algebra DB,γ(J), called the PD-envelope of (B, J) relative to (A, I,γ), with a PD-ideal (J, [−]) such that
JDB,γ(B) ⊆ J and such that [−] is compatible with γ. The PD-algebra (DJ,γ(B), J, [−]) is universal among
B-algebras C containing a PD-ideal (K, δ) such that JC ⊆ K and such that δ is compatible with γ.

When working in characteristic p or mixed characteristic, instead of considering π-adic pro-infinitesimal
thickening—as we did when defining Ainf—we now consider π-adic PD-thickenings for defining Acris.

Definition 2.7. Let R be a p-complete Zp-algebra. A p-adic PD-thickening of R is a triple (D, D→ R, (γn)n≥0)
where D is p-complete, D→ R is a surjection, and (γn)n≥0 is a PD-structure on J = ker(D→ R) compatible with
the canonical PD-structure on (p). ⌟

Definition 2.8. We define
Acris B DAinf ,γcan

(
(ξ)

)∧
p

as the p-completion of the PD-envelope of (Ainf , (ξ)) relative to (Zp, (p), γcan). ⌟

Remark 2.9. One can show, that

Acris � H0
cris(Spec(OC)/Zp) � H0

cris(Spec(OC/(p))/Zp)

where H0
cris(−/Zp) denotes crystalline cohomology. ⌟

Denote by DZp[x]
(
(x)

)
the PD-envelope of the Zp-algebra Zp[x] and the ideal (x). The canonical morphism

Zp[x]→Ainf , x 7→ ξ gives rise to an isomorphism

Acris �Ainf⊗̂Zp[x]DZp[x]
(
(x)

)∧
p .

Moreover,

DZp[x]
(
(x)

)∧
p �
‘⊕

n≥0
Zp ·

xn

n!
�
(
Zp[y0, y1, y2, . . . ]/(y0 − x, yp

1 − py0, yp
2 − py1, . . . )

)∧
p

is the free p-complete PD-algebra on one generator. In particular, we obtain

Acris/(p) � OC/(p) ⊗Fp Fp[y1, y2, . . . ]/(yp
1 , yp

2 , . . . )

is a very non-noetherian and very non-perfect ring.
Denote by

[ ξn
n!
]
∈Acris the n-th divided power of ξ. Every element of Acris can be written as a power series

∑
n≥0

an

ï
ξn

n!

ò
with an ∈Ainf converging to 0 in the p-adic topology. Note that this expression is not necessarily unique.
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Definition 2.10. We define the integral crystalline period ring as

B+
cris BAcris[p−1] . ⌟

Remark 2.11. The ring Bcris, Fontaine’s ring of crystalline periods, is constructed as a localisation of Bcris. ⌟

Lemma 2.12. The natural morphism Ainf → B+
dR extends to an injection

B+
cris −→ B+

dR .

Proof. Note that B+
dR is a Qp-algebra by construction, hence the ideal (ξ) admits a unique PD-structure. Thus,

the natural morphism Ainf → B+
dR induces a morphism DAinf ,γcan

(
(ξ)

)
→ B+

dR by definition. As B+
dR is complete

with respect to the canonical topology and Acris = DAinf ,γcan
(
(ξ)

)∧
p , it suffices to show that the morphism

DAinf ,γcan
(
(ξ)

)
−→ B+

dR

is continuous with respect to the p-adic topology on the domain and the canonical topology on the codomain.
Continuity can be checked on the finite level, so we consider the induced map

DAinf ,γcan
(
(ξ)

)
−→Ainf[p−1]/(ξn) .

The image of this map is contained in 1
(n−1)! Ainf/(ξn) and since Ainf/(ξn) is open by construction, this shows

continuity. Thus, the natural morphism extends to a morphism

Acris −→ B+
dR

and as p is invertible in B+
dR, we obtain a morphism

B+
cris −→ B+

dR .

It remains to check that this morphism is injective. Note that the axioms of the divided powers imply that

ξm
ï
ξn

n!

ò
=

(n + m)!
n!

ï
ξn+m

(n + m)!

ò
.

In particular, if we can rewrite any finite sum

<∞∑
n≥0

an

ï
ξn

n!

ò
=
<∞∑
n≥0

bn

ï
ξn

n!

ò
so that if bn , 0, then bn < (ξ). By taking limits, we may assume that any element x ∈Acris is of the form

x =
∑
n≥0

an

ï
ξn

n!

ò
so that if an , 0, then an < (ξ). If x , 0, then there is a minimal n so that an , 0. In particular, there is a minimal
n so that an < (ξ). Thus, the ξ-adic valuation of x is finite and, hence, the image of x in B+

dR is non-zero. □
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Appendix: The Rings of p-adic Hodge Theory

We briefly go over the rings appearing in the quote at the start.
Let us start with the human rings:

(i) Qp is the field of p-adic numbers,

(ii) Zp is the ring of p-adic integers, the ring of integers of Qp,

(iii) Fp is the finite field with p elements, the residue field of Zp,

(iv) Qp is an algebraic closure of Qp,

(v) Fp is an algebraic closure of Fp,

(vi) Cp is the completion of Qp,

(vii) OCp is the ring of integers of Cp,

(viii) Qunr
p is the maximal unramified subextension of Qp, and

(ix) BHT the Hodge–Tate period ring, is the ring of Laurent polynomials BHT = Cp
[
t±
]

over Cp.

The dwarvish rings are the following:

(i) Ã is the ring of Witt vectors Ã = W(C♭p) of C♭p,

(ii) EQp is the subfield FpLε − 1M of C♭p of norms of the cyclotomic extension Qp(µp∞ ),

(iii) AQp is the closure of Zp
[
π±1], where π = [ε] − 1, in Ã,

(iv) BQp is the ring BQp = AQp [p−1],

(v) E is a separable closure of E,

(vi) A is the unique p-saturated p-complete subring of Ã containing AQp , and

(vii) B is the ring B = A[p−1].

Then there are the elvish rings:

(i) Bcris is the crystalline period ring, as constructed in Section 2.2,

(ii) Bst is the semistable period ring, which as an abstract ring is Bst = Bcris[u] for u = log
Ä

[p♭]
p

ä
, and

(iii) BdR is the de Rham period ring, as constructed in Section 2.1.

A finally, of course, the one ring to rule them all:

(i) Ainf is Fontaine’s first period ring, as constructed in Section 1.
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