Locally Compact Abelian Groups

The main goal of this talk is to compute certain condensed Ext-groups of locally compact abelian groups in the derived category of condensed abelian groups and use these computations to compare Ext-groups of locally compact abelian groups to those of their condensed counterparts.

1 Introduction

A particular type of topological (abelian) groups we are interested in is the locally compact one. By this we mean nothing more than that the underlying topological is locally compact. A reminder:

Definition 1. A Hausdorff topological space *X* is *locally compact* if every point $x \in X$ has a compact neighbourhood (i.e. if there is some compact *C* and open *U* such that $x \in U \subseteq C$).

One interesting property of locally compact topological spaces is the behaviour of 'topological hom-sets'. The usual topology is the following.

Definition 2. Let *X*,*Y* be topological spaces. We call the topology generated by the subsets *V*(*C*, *U*) = {*f* ∈ Hom(*X*,*Y*) | *f*(*C*) ⊆ *U*} for all choices of compact *C* ⊆ *X* and open *U* ⊆ *Y* the *compact-open topology* on Hom(*X*,*Y*).

It is additionally guaranteed that the composition map $Hom(X, Y) \times Hom(Y, Z) \rightarrow Hom(X, Z)$ is continuous if *Y* is locally compact.

Example 3. We provide some interesting (non)-examples of locally compact abelian groups:

- (i) Discrete groups, e.g. **Z**;
- (ii) Local fields, e.g. **R** and **Q***p*;
- (iii) Compact groups, e.g $\mathbb{T} := \mathbb{R}/\mathbb{Z}$;
- (iv) Two non-examples are **Q** and $\{(0,0)\}\cup\mathbb{R}_{>0}\times\mathbb{R}$.

We denote by **LCA** the category of locally compact abelian groups. We equip the continuous homomorphisms $Hom_{\text{LCA}}(A, B) \subseteq Hom_{\text{Top}}(A, B)$ with the subspace topology.

Remark. The category **LCA** is not an abelian category, but it is a quasi-abelian. This means that it is additive, kernels and cokernels exists and these are stable under pushout and pullback respectively. However, if $f: A \rightarrow B$ is a morphism in **LCA**, we do not necessarily get an isomorphism coker(ker f) \rightarrow ker(coker f). We call f *strict* if it does canonically induce such an isomorphism and we call an exact sequence *strict exact* if all of its morphisms are strict. The general idea is that many constructions in abelian categories are generalisable to quasi-abelian categories as long as we replace the notion of exactness by that of strict exactness.

It turns out that equipping a locally compact space with a commutative group structure is well-understood, as the following theorem shows.

Theorem 4. Let A be a locally compact abelian group. We obtain an isomorphism $A \cong \mathbb{R}^n \times A'$, *where A*′ *is an extension of a discrete group by a compact one.*

Additionally, we have one more powerful tool at our disposal.

Definition 5. The *Pontryagin dual* of a locally compact abelian group *A* is $D(A) = Hom_{ICA}(A, T)$.

Proposition 6. *Let A be a locally compact abelian group.*

- *(i) The topological abelian group* **D**(*A*) *is locally compact;*
- *(ii)* If A is discrete, then $D(A)$ is compact and vice versa;
- *(iii) The natural map* $A \to \mathbb{D}(\mathbb{D}(A))$ *is an isomorphism.*

Remark. Note the interesting examples $D(\mathbb{R}) = \mathbb{R}$, $D(\mathbb{Z}) = \mathbb{T}$ and $D(\mathbb{T}) = \mathbb{Z}$.

Corollary 7. *The category* **LCA** *is generated under filtered (co)limits, kernels, cokernels and extensions* $by \mathbb{Z}$ and \mathbb{T} *.*

Proof. Clearly **R** is an extension of **Z** and **T**. Furthermore, any discrete group *A* admits a twoterm free resolution $0 \to \bigoplus_I \mathbb{Z} \to \bigoplus_J \mathbb{Z} \to A \to 0$. Dually (by Proposition 6), any compact group *A* admits a two-term compact resolution $0 \to A \to \prod_I \mathbb{T} \to \prod_I \mathbb{T} \to 0$. Now Theorem 4 finishes the proof.

2 Passing to the condensed and derived setting

Our first observation when passing to the condensed setting is that the topological and condensed structures on hom-sets are often compatible in the following manner.

Proposition 8. *Let A*, *B be Hausdorff topological abelian groups, where A is additionally assumed to be compactly generated. Then*

$$
\underline{\text{Hom}}(\underline{A}, \underline{B}) = \text{Hom}(A, B).
$$

Proof. Note first that by Hom(*A*, *B*) we mean continuous *group homomorphisms*. We first construct natural maps $\underline{Hom}(\underline{A}, \underline{B})(S) \rightarrow Hom_{Top}(A, B)(S)$ for all profinite sets *S*. We identify the left hand side with $\underline{Hom}(\underline{A},\underline{B})(S) = Hom_{\textbf{Cond}(\textbf{Ab})}(\mathbb{Z}[\underline{S}]\otimes \underline{A},\underline{B})$ and the right hand side with

$$
\underline{\text{Hom}_{\text{Top}}(A, B)}(S) = \text{Hom}_{\text{Top}}(S, \text{Hom}_{\text{Top}}(A, B))
$$
\n
$$
= \text{Hom}_{\text{Top}}(S \times A, B)
$$
\n
$$
= \text{Hom}_{\text{Cond}(\text{Set})}(\underline{S \times A}, \underline{B})
$$
\n
$$
= \text{Hom}_{\text{Cond}(\text{Ab})}(\mathbb{Z}[\underline{S}] \otimes \mathbb{Z}[\underline{A}], \underline{B}).
$$

Precomposition with the (surjective) map $\mathbb{Z}[\underline{S}] \otimes \mathbb{Z}[\underline{A}] \to \mathbb{Z}[\underline{S}] \otimes \underline{A}$ induces an injection

$$
\underline{\mathrm{Hom}}(\underline{A}, \underline{B})(S) \hookrightarrow \mathrm{Hom}_{\mathrm{Top}}(A, B)(S).
$$

To see what the image of this map is, we use the (partial) resolution

$$
\mathbb{Z}[\underline{A} \times \underline{A}] \xrightarrow{\pi_1} \mathbb{Z}[\underline{A}] \xrightarrow{\pi_0} \underline{A} \to 0,
$$

given on generators by maps $[(a_1, a_2)] \mapsto [a_1 + a_2] - [a_1] - [a_2]$ and $[a] \mapsto a$. By (left) exactness, a morphism $\mathbb{Z}[S] \otimes \mathbb{Z}[A] \to \mathbb{B}$ factors through $\mathbb{Z}[S] \times \mathbb{A}$ if and only if it vanishes after precom- $\text{position with } \pi_1$. Identifying $\text{Hom}_{\text{Cond}(Ab)}(\mathbb{Z}[\underline{S}] \otimes \mathbb{Z}[\underline{A} \times \underline{A}], \underline{B}) = \text{Hom}_{\text{Top}}(S \times A \times A, B)$, one

sees that precomposition with π_1 sends the map $f: S \times A \rightarrow B$ to the map $(s, a_1, a_2) \mapsto f(s, a_1 +$ *a*₂) − *f*(*s*, *a*₁) − *f*(*s*, *a*₂). Hence, the image of the map $\underline{Hom}(\underline{A}, \underline{B})(S) \hookrightarrow Hom_{Top}(A, B)(S)$ is precisely $Hom(A, B)(S)$.

We can pass to the *derived* setting in two natural ways:

- (1) We can stay in **LCA**. By replacing the notion of exactness by that of *strict* exactness one can still define a sensible derived category *D*♭ (**LCA**).
- (2) We can pass from locally compact abelian groups to condensed groups via the functor $A \mapsto \underline{A}$, and then work in the category $D(\text{Cond}(A\mathbf{b}))$.

In fact, one can show that strict short exact complexes are mapped to exact complexes by said functor. In particular, we obtain a functor $D^{\flat}(\mathbf{LCA}) \to D(\mathbf{Cond}(\mathbf{Ab}))$. In the remainder of this talk we will see, by ways of computing Ext-groups and observing that all results agree, that this is really a fully faithful embedding.

3 Ext-groups

Let's first recall the construction of Ext-groups of objects *X*,*Y* in an abelian category A with enough projectives and injectives.

- (1) Choose a projective resolution $P_{\bullet} \to X$. In the derived world, this amounts to choosing an isomorphic complex with projective entries.
- (2) Apply $\text{Hom}(-, Y)$ to obtain the complex $R \text{Hom}(X, Y) = \text{Hom}(P_{\bullet}, Y)$.
- (3) Take (co)homology, i.e. $Ext^i(X, Y) = H^i(Hom(P_{\bullet}, Y)).$

Of course the same result can be achieved by replacing *Y* by an injective resolution.

This process yields in $\text{Cond}(\textbf{Ab})$ the objects $R\underline{\text{Hom}}(X,Y) \in D(\text{Cond}(\textbf{Ab}))$ and $\underline{\text{Ext}}^i(X,Y) \in$ **Cond**(Ab). We specifically wish to compute the objects $R\underline{\text{Hom}}(\underline{A}, \underline{B})$, where A , B are locally compact abelian groups.

To aid this computation, we introduce two computational tools. First, what we call the *Eilenberg-Maclane resolution*.

Theorem 9. *Let A be an abelian group. It has a functorial resolution*

$$
\cdots \to \bigoplus_{j=1}^{n_i} \mathbb{Z}[A^{r_{i,j}}] \to \cdots \to \mathbb{Z}[A^3] \oplus \mathbb{Z}[A^2] \to \mathbb{Z}[A^2] \to \mathbb{Z}[A] \to A,
$$

where n_i , $r_{i,j} \geq 0$ *in* **Ab**.

Corollary 10. *Let* A *be a condensed abelian group. It has a resolution*

$$
\cdots \to \bigoplus_{j=1}^{n_i} \mathbb{Z}[\mathcal{A}^{r_{i,j}}] \to \cdots \to \mathbb{Z}[\mathcal{A}^3] \oplus \mathbb{Z}[\mathcal{A}^2] \to \mathbb{Z}[\mathcal{A}^2] \to \mathbb{Z}[\mathcal{A}] \to \mathcal{A}
$$

in $\text{Cond}(\text{Ab})$ *, where* n_i *,* $r_{i,j} \geq 0$ *.*

Proof. This follows from functoriality and the exactness of sheafification. ■■

Corollary 11. *Let* A,M *be condensed abelian groups and let S be an extremally disconnected set. There is a spectral sequence*

$$
E_1^{i_1 i_2} = \prod_{j=1}^{n_{i_1}} H^{i_2}(\mathcal{A}^{r_{i_1 j}} \times \underline{S}, \mathcal{M}) \implies \underline{Ext}^{i_1 + i_2}(\mathcal{A}, \mathcal{M})(S)
$$

that is functorial in A,M *and S.*

Proof. Resolve A as in Corollary 10 and tensor with $\mathbb{Z}[S]$, which is exact. Now apply *R* Hom($-, \mathcal{M}$) and note that $H^i(R\text{ Hom}(\mathbb{Z}[\mathcal{A}^r\times \underline{S}],\mathcal{M}))=H^i(\mathcal{A}^r\times \underline{S},\mathcal{M}).$ The proof now follows from the fact that

$$
\underline{\operatorname{Ext}}^{i}(\mathcal{A}, \mathcal{M})(S) = H^{i}(\mathrm{R}\underline{\operatorname{Hom}}(\mathcal{A}, \mathcal{M}))(S)
$$

\n
$$
= H^{i}(\mathrm{R}\underline{\operatorname{Hom}}(\mathcal{A}, \mathcal{M})(S))
$$

\n
$$
= H^{i}(\mathrm{R}\operatorname{Hom}_{\operatorname{Cond}(\mathbf{Ab})}(\mathbb{Z}[\underline{S}], \mathrm{R}\underline{\operatorname{Hom}}(\mathcal{A}, \mathcal{M})))
$$

\n
$$
= H^{i}(\mathrm{R}\operatorname{Hom}_{\operatorname{Cond}(\mathbf{Ab})}(\mathbb{Z}[\underline{S}] \otimes \mathcal{A}, \mathcal{M})).
$$

To compare *all* Ext-groups of locally compact abelian groups with those of their corresponding condensed abelian groups, it suffices to do so for $R\underline{Hom}(\underline{A}, \underline{B})$ with $A, B \in {\bigoplus \mathbb{Z}}, \Pi, \Pi, \mathbb{R}$ by Corollary 7. In fact, since $\mathbb{Z} = \mathbb{Z}[\underline{\ast}]$ is projective and the case $A = \mathbb{R}$ follows from $A = \mathbb{Z}$ and $A = T$, it suffices to consider $A = \prod T$. Similarly in the second argument, the case $B = T$, therefore also $B = \prod T$ follows from $B = \mathbb{R}$ and $B = \mathbb{Z}$. Hence, we only need to explicitly compute the cases where $A = \prod \mathbb{T}$ and *B* is either discrete or **R**. We obtain the following results:

Theorem 12. Let I be a (possibly infinite) set. Write $A = \prod_I \mathbb{I}$.

(i) If B is discrete, then

$$
R\underline{\mathrm{Hom}}(\underline{A},\underline{B})=\bigoplus_{I}\underline{B}[-1],
$$

 ω *here the map* $\bigoplus_{I} \underline{B}[-1] \to R\underline{\mathrm{Hom}}(\underline{A},\underline{B})$ *is induced by the maps*

$$
\underline{B}[-1] = R\underline{Hom}(\underline{\mathbb{Z}}[1], \underline{B}) \to R\underline{Hom}(\underline{\mathbb{T}}, \underline{B}) \xrightarrow{p_i^*} R\underline{Hom}(\underline{A}, \underline{B}),
$$

where $p_i \colon A \to \mathbb{T}$ is the *i*-th projection.

(ii) If $B = \mathbb{R}$ *, then*

$$
R\underline{\mathrm{Hom}}(\underline{A},\underline{B})=0.
$$

Proof. (i) We deal with the case where *I* is finite first. Since $\prod_I \mathbb{T} = \bigoplus_I \mathbb{T}$ now, it suffices to show that $R\text{Hom}(\mathbb{Z}[1], B) \to R\text{Hom}(\mathbb{T}, B)$ is an isomorphism i.e. that $R\text{Hom}(\mathbb{R}, B) =$ 0. To achieve this, we show that $0 \to \mathbb{R}$ induces an isomorphism on Ext-groups. By Corollary 11, it suffices to prove that the map (induced by $0 \to \mathbb{R}$) $H^i(\mathbb{R}^r \times S, B) \to$ *H*^{*i*}(*S*, *B*) is an isomorphism for any profinite *S* and *r* \geq 0. This follows from the fact that

 $H^i([-n,n]^r \times S, B) \to H^i(S, B)$ is an isomorphism (using the fact that sheaf cohomology is homotopy invariant) by taking the derived limit.

Let *I* now be infinite. We just need to show that the colimit over all finite subsets of *I* induces an isomorphism

$$
\operatorname{colim}_{J \subseteq I} R\underline{\operatorname{Hom}}(\prod_{J} \mathbb{T}, \underline{B}) = R\underline{\operatorname{Hom}}(\underline{A}, \underline{B}).
$$

By Corollary 11, it suffices to check this fact on (Čech) cohomology groups, where this is a known fact (for example by a result in the previous talk).

(ii) (*Sketch*) Write $F(A)$ for the Eilenberg-Maclane resolution of \underline{A} from Corollary 10. Now $R\underline{Hom}(A,\mathbb{R})(S)$ is computed by the complex

$$
0 \to \bigoplus_{j=1}^{n_0} C(A^{r_{0,j}} \times S, \mathbb{R}) \to \bigoplus_{j=1}^{n_1} C(A^{r_{1,j}} \times S, \mathbb{R}) \to \dots,
$$

where now $C(X, Y) = \text{Hom}_{\text{Top}}(X, Y)$. The crucial idea in this proof is now that multiplication by 2 is now bounded on $A = \prod_I \mathbb{T}$, but not on **R**. We use the fact that the maps ·2 and [2] (induced by multiplication by 2 on *A*) are in fact homotopic via a homotopy $h_{\bullet} : F(A)_{\bullet} \to F(A)_{\bullet+1}$. We show now that the above complex is exact, hence take some $f \in \bigoplus_{j}^{n_i} C(A^{r_{i,j}} \times S, \mathbb{R})$ such that $df = 0$. Then $2f - [2]^* f = d(h_{i-1}^*(f))$, and similarly for all $n \geq 0$ we find

$$
f = \frac{1}{2^n} [2^n]^*(f) + d(\frac{1}{2}h_{i-1}^*(f) + \frac{1}{4}h_{i-1}^*([2]^*(f)) + \cdots + \frac{1}{2^n}h_{i-1}^*([2^{n-1}]^*(f))).
$$

Now, since the image of $[2^n]^*(f)$ stays bounded and h_{i-1}^* has bounded norm, we get after taking the limit $n \to \infty$ that $f \in \text{Im } d$.

We conclude by showing that the passage from locally compact groups to condensed abelian groups is fully faithful.

Corollary 13. *The functor* $D^{\flat}(\mathbf{LCA}) \to D(\mathbf{Cond}(\mathbf{Ab}))$ *from Section 2 is fully faithful.*

Proof. It suffices to show that for any two locally compact abelian groups A, B, R Hom_{LCA}(A , B) \rightarrow R Hom $(\underline{A}, \underline{B})$ is an isomorphism. This follows from Theorem 12, its preceding discussion and the corresponding calculations on $D^{\flat}(\mathbf{LCA})$ by Hoffmann and Spitzweck.

Remark. Note in particular that all $\underline{Ext}^i(\underline{A}, \underline{B}) = 0$ for $A, B \in \mathbf{LCA}$ and $i \geq 2$.