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a
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R f.g .

Tt-aly
,

XIR Sm .

proj

Of ve H(X/R)

Then there exists a Zmiski-dense set of closed pt Ri ,
it

of Speak ,

sid: Firs Hr(Xp/v(p)

Aket Hr(XR) =

Ert(0x0
modules w/ integrable cour

-> represent -Ela as
extension

o -> (Q
,

a)-> (ET) -> (0
,
1) - 0

.

② ~ mach
p: Fig Hir(i(r(pi)

·

# image of
in Ho((X/)) iszar

i
.

e
. v locally trivial

-> (Ev , D) 1x Loctrinal (as bill w/ flat connection
Ri

⑤ results
of

Andie
,
Bost

, Chudmosty
-

Chunky

(Gotended-Kate wag. for (Ev ,
T) of

the above from (

-> (Ev
,
2) find

,
it. v = 0 ⑪

Ben similar sult for Sym" (E.

%)
,

-

relace to n = T case wa Veronage arb,

# Har-
> IPSym"Hi



Bei Ogns Prop . E .

2. 6
.

in Deligae - Mila-

Ogns-Shik
attributed to Kate

more doed anymad for X
ell

. curve/Retale
on It

& - VE Finge
at for pe st

. Xpe is

adivar

Frog & Finge
= 0 in Hireels

& do

may onling prices by
wouldof Sene

a

may
pines at v mode Fry Hire Inp)

O-gaed are : assure ~modpeFlory for almost all
ge

for ge supersingular vwodge
F

Hodge

- O

many supersingular prices by theorem of Eldies

oggely spai care

Fa: Does odiary us supersingular
have on effect

on char
.

p holonomy for all. curves ?


