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Introduction

The seminar is about the Grothedieck-Katz conjecture and related new conjectures
by Lam and Litt and about the unconditional results concerning Gauss-Manin con-
nections.

Let X be a smooth connected quasi-projective scheme over the complex numbers.
The C-rational points of X have the structure of a complex manifold denoted by
Xan. A (holomorphic) connection on Xan is a locally free OXan-module E of finite
rank together with a C-linear map ∇ : E → E ⊗OXan Ω1

Xan/C which satisfies the

Leibniz rule ∇(ae) = e ⊗ da + a∇(e), for local sections e ∈ E, a ∈ OXan . Such a
connection gives rise to a continuous family of linear ordinary differential equations
on Xan. Indeed if U ⊂ Xan is open such that E|U = Or

U , then ∇ is given by an
r×r-matrix A of holomorphic 1-forms and the kernel of ∇ on U consists the vectors
(fi) ∈ Or

U satisfying
(dfi) = A(fi).

Up to shrinking U , the solution space of this differential equation is an r-dimensional
C-vector space. Analytic continuation of a solution along a loop centered at some
base point defines a new solution on U . This process gives rise to the monodromy
representation π1(X

an) → GLr(C) defined by (E,∇). Surprisingly any representa-
tion π1(X

an) → GLr(C) (which only depends on the topological space Xan) arises
in such a way and by a result of Deligne even more surprisingly (answering Hilbert’s
21st Problem) one can even take (E,∇) as the analytification of an algebraic con-
nection (Ealg,∇alg) on X which is regular singular at infinity and is uniquely de-
termined. Since the differential equation defined by (E,∇) has algebraic origin it
is natural to ask when there is a full set of algebraic solutions as well, or equiv-
alently when the corresponding monodromy representation has finite image. The
Grothendieck-Katz conjecture says that this should be the case precisely when the
reduction of (Ealg,∇alg) modulo almost all primes p has vanishing p-curvature. Here
the p-curvature of a connection is a notion which is particular for connections on
schemes in positive characteristic.

In fact it suffices to prove the conjecture for X = P1 \ {0, 1,∞}. In general the
conjecture is far open. The best general result is Katz’ Theorem, saying that the
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conjecture is true for Gauss-Manin connections. These are connections which can
be canonically associated to a smooth morphism of C-schemes X → S.

There is some recent progress: Lam and Litt introduced a new in a sense more
general conjecture, which also allows to incorporate non-linear ODE’s, to decide
whether a single formal solution can be algebraic, or if formal isomonodromic defor-
mations of a given connection are algebraic. Lam and Litt prove these conjectures
in the Gauss-Manin context.

The proofs combine Hodge-theoretic methods with methods from positive char-
acteristic algebraic geometry and p-adic arithmetic geometry in an intriguing way.
In this seminar we aim to understand the basic statements and the main methods
and ideas entering in the proofs.

The Talks

1. (09.04.25) Introduction and discussion

Kay

- (16.04.25) No talk

2. (23.04.25) Local Systems, Monodromy Representation and Con-
nections

Let X be a connected complex manifold with a base point x0 ∈ X. Define a
local system on X (with complex coefficients) as a locally constant sheaf F of fi-
nite dimensional C-vector spaces on X. Define the monodromy representation
TF : π1(X,x0) → Glr(C) associated to F , where r = rkF , following [Sab07, 15.d]
relying on [Sab07, Lemma 15.5]. State and explain [Sab07, Theorem 15.8]. (Equiv-
alence ”local systems of rank r” with ”r-dimensional complex representations of
π1(X,x0)”.)

Then define a (flat) connection on X, give the local description and basic oper-
ations, as in 11.1–11.3, 11.a, 11.b, 12.2, 12.4. of [Sab07]. Note that these notions
can as well be defined algebraically on schemes over any base field. Explain the
relation to ODE’s as around (12.7) and note that this also includes higher order
linear homogeneous equations as explained on the bottom of page 537 (first page
of the article) of [Kat76]. Then state and explain [Del70, I, Thm 2.17] (see [Sab07,
Thm 12.8] for a proof). Putting everything together we can associated to an ODE
a monodromy representation. Explain how this works in case of z∂f/∂z = αf on
C \ {0}, where α ∈ C, see [Kat76, p. 539].

NN

3. (30.04.25) Regular Singular connections and the Riemann-Hilbert
Correspondence

Go through [Kat76, pp. 554–551]. In particular explain GAGA, the notion of simple
normal crossing divisor (= “a union of smooth divisors which cross transversally”),
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Deligne’s definition of regular singular connection (= “algebraic differential equa-
tions with regular singular points at infinity”), and state the main results in the
form [Del70, II, Thm 5.9] but follow the proof in [Kat76] in particular explain the
Key Lemma on p. 547. As a corollary from what we saw in the last talk, say that we
get an equivalence between the category of complex local systemes on the complex
manifold defined by a smooth quasi-projective C-scheme X and flat regular singular
algebraic connections on X. This is the classical Riemann-Hilbert correspondence.
See also [Del70, II, 5.] for details.

If time remains you could end by mentioning that (in characteristic zero) an
integrable connection is an O-coherent D-module and that the Riemann-Hilbert
correspondence extends to an equivalence between the derived category of bounded
complexes of D-modules with regular holonomic cohomology and the derived cat-
egory of bounded complexes of constructible sheaves of C-vector spaces, see, e.g.,
[Tey, 1.5]. But this is not needed in the following.

NN

4. (07.05.25) The Gauss-Manin connection

Explain the construction of the Gauss-Manin connection following [KO68, 2.] (see
in particular Theorem 1). See also [Kat72, 1.4]. Show that it satisfies Griffiths’
transversality, see [Kat72, Prop (1.4.1.6)]. State that the Gauss-Manin connection
is regular-singular as in [Del70, Thm 7.9] (it suffices to do this for V the trivial
connection). Then explain the Theorem of Brieskorn that the monodromy repre-
sentation defined by a Gauss-Manin connection over a curve is quasi-unipotent at
infinity following [Del70, III, 2.]. If time remains explain that certain hypergeomet-
ric differential equations ”come from” Gauss-Manin connections of certain curves,
see [Kat72, Prop (6.8.6) and around].

NN

5. (14.05.25) The Grothendieck-Katz conjecture

Define the p-curvature of a connection in characteristic p > 0 following [Kat70, (5.0)]
and give Cartier’s Theorem [Kat70, Theorem 5.1]. Just for sake of completeness
state [Kat70, Prop 5.2]. Then state the Grothendieck-Katz conjecture in the form
[Kat72, (I quat), p. 3] and discuss the other incarnations [Kat72, (I) – (I log),
p. 1–2]. Explain that the general conjecture is equivalent to [Esn23, Conj 2.7], in
particular it suffices to consider P1 \ {0, 1,∞}. See also [Lit, 4.2] and discuss [Lit,
Example 4.2.4]. Then state [Kat72, Thm (5.1)] (the Grothendieck-Katz conjecture
is true for Gauss-Manin connections). After some Hodge-theoretic preliminaries in
the next two talks the proof will be given in talk 8. If time remains you can say a
little bit on the state of the art of the conjecture, see the last paragraph in [Lit, 4.2,
p. 30].

NN
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6. (21.05.25) Excursion to Hodge-theory

This talk does not use the talks before and is about abstract Hodge theory and
some of its consequences. Go through [Kat72, 4.2]. The aim is to understand the
statement and the proof of [Kat72, Prop (4.2.2.3)]. In particular define the notions
of (a family of) pure/mixed Hodge structure(s) and polarizations thereof. See also
[Del71] and [PS08] for additional information on (mixed) Hodge structures.

NN

7. (28.05.25) Flatness of the Hodge filtration on the Gauss-Manin
connection implies finite monodromy

Go through [Kat72, 4.3]. Explain the proofs of [Kat72, Prop (4.3.1) and Prop (4.3.3)]
as detailed as possible. Proposition (4.3.3) is the first main ingredient in the proof
of the Grothendieck-Katz conjecture for the Gauss-Manin connection.

NN

8. (04.06.25) Proof of Katz’ Theorem

Define the Kodaira-Spencer class as in [Kat72, 1.1] and state (without proof) [Kat72,
Prop (1.4.1.7)]. Then switch to positive characteristic and recall the definition of
the inverse Cartier operator as in [Kat72, (2.1.1) Thm]. Then explain the statement
of [Kat72, 3.2 Thm], which in view of the result above describes the Gauss-Manin
connection on the Hodge graded pieces in terms of the p-curvature introduced in
talk 5. This is the main technical result of [Kat72] and we use it as a black box.
Proceed by recalling [Kat72, (5.1) Thm] and explain the proof. If time remains you
can state [Kat72, 6.2 Thm] as an example application. The proof relies on the fact
that the hypergeometric differential equation comes from a Gauss-Manin connection
(as was maybe mentioned in talk 4).

NN

9. (18.06.25) The Conjecture of Lam and Litt

Introduce foliations, their leaves, the integrality of leaves etc. as in [LL, 2.1, 2.2],
see also [Sab07, 13.b, 13.1 -13.3]. Explain how an integrable connection (E,∇) gives
rise to a foliation on V(E), see [Bos01, A.1]. Then state [LL, Conjecture 2.3.1] and
explain how it implies [LL, Conj 1.1.1] and [LL, Conj 1.3.1]. If time remains say
a word that [LL, Conj 6.1.1] would be a consequence of (a stacky version of Conj
2.3.1) as well as the Grothendieck-Katz Conjecture, see [LL, Prop 13.0.2].

NN

10. (25.06.25) Picard-Fuchs equations and cycle class initial condi-
tions

Go through [LL, Sec 3], in particular state [LL, Thm 3.1.1] and explain the proof.

NN
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11. (02.07.25) Families of elliptic curves

State [LL, Theorem 4.1.1] and explain its proof. Note that [LL, Theorem 4.2.1]
already appeared in talk 8. (But you should still recall it.)

NN

12. (09.07.25) Main Theorem on non-linear differential equations

Go through [LL, Sec 6] and use whatever needed from section 7 to get clear state-
ments. In particular define isomonodromic deformations of a connection (Def 7.1.1),
state Conj 6.1.1, Def 6.1.2 and Theorem 6.1.3. Then try to explain as much of the
proof as possible following the outline in 6.2.

NN
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