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This talk is based on [Kat72, §4.2].

1 Definitions

Convention. A filtered object in an abelian category C is an object X together with a sequence of
subobjects F =

(
· · · ⊆ F 1 ⊆ F 0 ⊆ F−1 ⊆ · · ·

)
. If there are m,n such that Fm = X,Fn = 0, it’s

called finite.1

An ascendingly filtered object in an abelian category C is an object X together with a sequence
of subobjects W = (· · · ⊆ W−1 ⊆ W0 ⊆ W1 · · · ). If there are m,n such that Wm = 0,Wn = X,
it’s called finite.

Definition 1.1. For a complex subspace U ⊂ V together with an R-skeleton V = W ⊗R C with
W ∈ R−Mod as an R-vector space, let U be the complex conjugate subspace of U with respect
to that basis. Putting V (= W ⊗R ⟨1⟩)⊕ (W ⊗R ⟨i⟩), conjugation acts by mapping v⊗ i to −v⊗ i.

Definition 1.2. i) A (pure) Z-Hodge structure H of weight n is a finitely generated Z-module
HZ together with a finite filtration F of

HC := HZ ⊗Z C ∈ C−Mod

such that
HC =

⊕
p+q=n

F p ∩ F
q︸ ︷︷ ︸

=:Hp,q

.

Put HR := HZ⊗R. (Note that conjugation acts on the second factor in the tensor product.)

ii) Define an R-linear group action of C× on HC by s(z, v) = zpzqv, v ∈ Hp,q, p+ q = n. One
puts C(−) := s(i,−).

iii) A morphism of pure Hodge-structures is a map HZ → H ′
Z compatible with s.

iv) The rank of a Hodge structure is the complex dimension of HC.
1The convention bit here is that a filtration is by standard descending.
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v) Define an R-Hodge structure for a ring inclusion Z ⊂ R ⊂ R by exchanging Z-modules by
R-modules, and ⊗Z by ⊗R. In particular, there is the notion of an R-Hodge structure.

Between Hodge structures of different weights, there is only the zero morphism, due to
s(2, f(u)) = 2nf(u) = f(s(2, u)) = 2mf(u).2

Lemma 1.3 ([Del71, §2.1.11]). Hodge structures form an abelian category equipped with the
obvious internal hom and ⊗. The tensor product is defined by (H ′ ⊗ H ′′)Z = H ′

Z ⊗ H ′′
Z; the

filtration F is the graded C-tensor product Fn =
⊕

p+q=n F
′p ⊗C F ′′q of the respective filtrations

F ′, F ′′ where n is the sum of the weights of H ′ and H ′′; and so is the action s.
The internal hom of two Hodge structures H,H ′ of the same weight3

(Hom(H,H ′))Z = HomZ(H,H ′), s(z, f)(x) = s(z, f(s(z−1, x))), f ∈ Hom(H ′, H ′′)C, x ∈ H ′′
C.

The filtration F of Hom(H ′, H ′′)C is defined by

Fn =
{
f ∈ HomC(H

′
C, H

′′
C) : f [F

i] ⊂ F i+n∀i
}
.

(There are also dual spaces and outer products)

Example 1.4. The Tate Hodge structure Z(n) is the Hodge structure of rank 1 and weight −2n,
which is given by

HZ = Z, F−n = HZ, F
n+1 = 0.

We have Z(n) ∼= Z(1)⊗n, which can be seen by counting degrees in the graded tensor product of
the filtrations.

Z(n)Z is often understood as the subgroup (2πi)nZ ⊂ C, which comes from Cauchy’s integral
theorem. (I will hopefully return to that later.)

Definition 1.5. A polarization of a weight n Hodge structure is a homomorphism

H ⊗H
( , )−−→ Z(−n)

such that the real bilinear form on HR given by (x, y) 7→ (x,Cy) is symmetric positive definite.
An object which admits a polarization (there are no uniqueness restrictions) is called polarizable.4

Definition 1.6. Define the homomorphisms H → H ′ up to isogeny as Hom(H,H ′)⊗Z Q. This
is equivalent to the morphisms of the category of Hodge structures localized at morphisms which
have finite kernel and cokernel on the integral lattices.

2Any number which is no root of unity could have been chosen instead of 2.
3If H ′, H ′′ are of weight n,m, there is a weight m − n Hodge structure H := Hom(H ′, H ′′) defined by HZ :={

f ∈ HomZ (H
′
Z, H

′′
Z ) : f [F

′n+k] ⊂ F ′′m+k+j
}

and F k :=
{
f ∈ HomC (H

′
C, H

′′
C ) : f [F

′n+j ] ⊂ F ′′m+k+j∀j
}
. The

morphism group of Hodge structures H ′ → H ′′ is zero nevertheless.
4In the literature, there is often a factor (2πi)n in front of (x,Cy). This comes from the identification of (2πi)−n

and Z(−n).
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Remark 1.7. 5 Polarizations factor through isogeny. The polarizable Hodge structures up to
isogeny form a full semi-simple subcategory, i. e. every object is a direct sum of simple objects.6

Hence it is closed under internal hom, ⊗, finite ⊕ of same weight, subobjects and quotient objects
H ′/H ′′ of polarizable Hodge structures H ′, H ′′.

Definition 1.8. We form the category D of polarized Hodge structures and the induced cat-
egory D′ of polarized Hodge structures up to isogeny. A morphism up to isogeny of polarized
Hodge structures (H ′, ( , )), (H ′′, ( , )) is an element f ∈ Hom(H ′, H ′′) ⊗ Q such that under
Hom(H ′, H ′′)⊗Q ↪→ HomR−Mod(H

′
R, H

′′
R), the image H ′

R
f−→ H ′′

R commutes with ( , ).

Definition 1.9. A family of weight n pure Hodge structures on S ∈ Top is a local system HZ on
S of Z-modules of finite type, together with a continuously varying filtration (F )s of (HC)s on
the stalks, which is a pure Hodge structure on each stalk together with the Hodge filtration (F )s.
(A continuously/smoothly/. . . varying filtration means that it comes from a map S → X satisfying
the desired property where X is a flag space of HC.) Morphisms are given by morphisms of local
systems which are stalkwise Hodge structure morphisms.

A polarization is then a local system morphism HZ ⊗HZ
( , )−−→ Z(−n)S , where Z(−n)S is a

constant sheaf together with the constant Hodge filtration, such that the pure Hodge structures
on the stalks are Z(−n).

Note that the continuously varying filtration does NOT need to come from a filtration in the
category of C-local systems.

Remark 1.10. Remark 1.7 applies to families of Hodge structures with little change.

Definition 1.11. i) A mixed Hodge structure is an ascendingly and finitely filtered object
(HZ,W ),W = (0 ⊆ Wa ⊆ · · · ⊆ Wb = HZ), in Z−Modfin. gen. together with a filtration F

of HC = HZ ⊗Z C such that grWn := WnHZ/Wn−1HZ is a pure Hodge structure of weight n
for each n. The finite ascending filtration W is called weight filtration.

ii) A family of mixed Hodge structures on S is an ascendingly and finitely filtered object in the
category of local systems of finitely generated Z-modules (HZ,W ) together with a continu-
ously varying Hodge filtration F i

s of the stalks (HC)s such that grWn := WnHZ/Wn−1HZ is
a family of pure Hodge structures of weight n. The ascending filtration W is called weight
filtration.

iii) The morphisms of families of mixed Hodge structures are local system morphisms compatible
with both filtrations.

Lemma 1.12. A morphism of mixed Hodge structures (H ′,W ) → (H ′′,W
′
) induces morphisms

of pure Hodge structures grW
′

n → grW
′′

n .

5For the case of fixed polarizations, see also [PS08, Corollary 2.12].
6A simple object is an object without any nontrivial subobjects.
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Proof. Let f : (H ′,W
′
) → (H ′′,W

′′
) be a morphism. Since f respects W , the maps on the

graded pieces grW
′

n = W ′
n/W

′
n−1 are well-defined. f respecting F implies that

(
grW

′
n

)p,q
=

F ′p grW
′

n ∩F ′q grW ′
n , where there’s p + q = n, is mapped to

(
grW

′′
n

)p,q
. It follows from the

definition of s that s commutes with f .

There is a variation where W filters the tensor product HZ ⊗Z Q, cf. [Del71, §2.3]. If one
generalizes to R-Hodge structures for an arbitrary ring R, W may filter HR ⊗Z Q, cf. [PS08, Def.
3.1].

Fact 1.13. For a morphism of families of mixed Hodge structures φ : (HZ,W ) → (H ′
Z,W

′
), there

is W ′
i ∩ Imφ = φ[Wi].

One calls this strict compatibility.

2 Propositions

Proposition 2.1. For H̃ := (H( , )) a polarized Hodge structure, AutD(H̃) is finite.

Proof. Informally speaking, we can put together AutD(H̃) out of a torsion part and the non-
torsion part. There is an exact sequence

AutZ(torsion subgroup of HZ) −→ Aut(H̃) −→ AutZ(HZ/torsion) ∩AutR (HR, ( , ))︸ ︷︷ ︸
=:G⊂Gl(Rk)

.

G is the intersection of a discrete group and a compact group (the latter being some kind of
orthogonal group, basically), hence finite, rendering Aut(H̃) finite.

Proposition 2.2. Suppose, S ∈ Top is connected and it admits a universal covering S ′. Let
(HZ, F ) be a polarizable family of Hodge structures over S. If F is a sub-local system filtration,
there is a finite covering π : S ′′ π−→ S such that π∗(HZ, F ) is a constant family of pure Hodge
structures on S ′′.

Proof. π1(S, s0) acts on the stalk (HZ)s0 . This action preserves the filtration F due to assumption,
and it naturally preserves the polarization, as it only comes from a pullback of sheaves. Let
N := ker

(
π1(S, s0) → Aut(H̃s0)

)
.

π1(S)/N , due to Proposition 2.1, is finite. We have the corresponding covering S ′′ π−→ S. As
π1(S ′′) ∼= N acts trivially on the stalks, we conclude that π∗(HZ) is constant and thus π∗(HC).
The constancy of π∗(HC) follows from the fact that on S ′′, the operation of π1(S, s0) on the
stalks is trivial, and hence the monodromy representation is trivial.

Proposition 2.3. For S ∈ Top just as in Proposition 2.2, let (HZ,W ) be a family of mixed Hodge
structures on S. Let HZ and every (grWn HZ, F ) be polarizable. (Due to finiteness, polarizability
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of all the graded families actually suffices) Suppose that, like in Proposition 2.2, F is a locally
constant filtration. (⋆)

Then there exists a finite covering S ′′ π−→ S such that π∗(HZ,W, F ) is a constant family of Hodge
structures on S ′′.

Proof. Proposition 2.2 yields a finite covering S ′′ π−→ S such that the inverse image of any grWn HZ

is locally constant. The action of π1(S) must be compatible with this constancy, so multiplication
with the group ring element 1− γ ∈ Z[π1(S)] must be zero on grWn = WnHZ/Wn−1HZ∀n, which
is equivalent to

(1− γ)[Wn(HZ)s0 ] ⊂ Wn−1(HZ)s0 . (2.1)

Because of (⋆), 1− γ is an endomorphism of families of Hodge structures and Fact 1.13, we have

(1− γ)[Wn]
(2.1)
⊂ Wn−1HZ ⊂ Im(1− γ)

strict compatibility
= (1− γ)[Wn−1]. (⋆⋆)

Let m be minimal such that Wm ̸= 0. From (⋆⋆), it follows that the 1− γ homomorphism is zero
on Wm and inductively so on all arbitrary Wn, as it is zero on grn. Thus 1 − γ is zero on HZ

which is isomorphic to Wn for n ≫ 0. Due to the trivial action of π1(S ′′), π∗(HZ) is constant on
S ′′.

3 Hodge structures and cohomology

For now, we have defined the abstract notion of a Hodge structure without actually explaining
where it arises from.
Let X = Y an be the complexification of a smooth complex projective variety; or more generally,
Xan has to be compact Kähler.

Recall 3.1. A Kähler manifold of dimension n is a holomorphic manifold together with a Hermitian
(i.e. symmetric sesquilinear) inner product which comes from a smooth 2-form ω such that ω is
closed, i.e. dω = 0.

We now fix ω.

Recall 3.2. We have the isomorphism Hq(Xan,Q) ↪→ Hq(Xan,C) ∼= Hq
dR(X). One defines the

Laplacian operator ∆: Ωk(X) → Ωk−1(X) by δ ◦ d + d ◦ δ, where δ is (−1)n(k−1)+n+1 ⋆ d⋆.
(Roughly, to a dual-multivector, the Hodge star ⋆ assigns the orthogonal complement.)

Fact 3.3. In our setup, there is an isomorphism ker∆︸ ︷︷ ︸
⊂Ωk(X)

∼= Hk
dR(X).

Since X is Kähler, a harmonic k-form is a C-linear combination of dual-multivectors dz1 ∧
· · · zp ∧ zp+1. Hodge’s theorem then states that Hk

dR(X) decomposes to the sub-vector spaces
V p,q of (p, q)-forms and those form a pure Hodge structure of weight k with Hk(X) = HZ.
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Remark 3.4. Considering

HZ := H∗(X) =
⊕
k

Hk(X), HC =
⊕
k

Hk
dR(X),Wk :=

⊕
j≤k

Hj(X),

one gets a mixed Hodge structure.

Definition & Fact 3.5.

The Hodge-Riemann bilinear form on Hk
dR(X) is defined by

(α, β) 7→ (−1)(
k
2)
∫
X
α ∧ β ∧ ωn−k.

A covector/a class α ∈ Hk
dR(X) is called primitive :⇔ ω∧n−k+1α = 0. This leads to the primitive

cohomology
Hk

prim(X) := ker
(
α 7→ ω∧(n−k+1)α

)
.

Decomposing
Hk

dR(X) =
⊕

i≥max(k−n,0)

ωk−i ∧Hi
prim,

the Hodge-Riemann form is a polarization of R-Hodge structures on every summand (and hence
on Hk

dR(X) ∼= Hk(X;R).)

Example 3.6. i) The Tate Hodge structure R[−n] is a fitting Hodge structure to the cohomology
H2n(X) of a compact complex manifold X.

ii) The generator of H1(C×) is the unit circle, which, when integrated, yields the canonical
generator of HdR(C×) multiplied by 2πi.
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