Hodge structures

Uwe Wiegand

May 22, 2025

This talk is based on [Kat72, §4.2].

1 Definitions

Convention. A filtered object in an abelian category \mathfrak{C} is an object X together with a sequence of subobjects $\underline{F} = (\cdots \subseteq F^1 \subseteq F^0 \subseteq F^{-1} \subseteq \cdots)$. If there are m, n such that $F^m = X, F^n = 0$, it's called finite.¹

An ascendingly filtered object in an abelian category \mathfrak{C} is an object X together with a sequence of subobjects $\overline{W} = (\dots \subseteq W_{-1} \subseteq W_0 \subseteq W_1 \dots)$. If there are m, n such that $W_m = 0, W_n = X$, it's called finite.

Definition 1.1. For a complex subspace $U \subset V$ together with an \mathbb{R} -skeleton $V = W \otimes_{\mathbb{R}} \mathbb{C}$ with $W \in \mathbb{R} - \underline{\mathfrak{Mod}}$ as an \mathbb{R} -vector space, let \overline{U} be the complex conjugate subspace of U with respect to that basis. Putting $V(=W \otimes_{\mathbb{R}} \langle 1 \rangle) \oplus (W \otimes_{\mathbb{R}} \langle i \rangle)$, conjugation acts by mapping $v \otimes i$ to $-v \otimes i$.

Definition 1.2. i) A (pure) \mathbb{Z} -Hodge structure H of weight n is a finitely generated \mathbb{Z} -module

 $H_{\mathbb{Z}}$ together with a finite filtration \underline{F} of

$$H_{\mathbb{C}}\coloneqq H_{\mathbb{Z}}\otimes_{\mathbb{Z}}\mathbb{C}\in\mathbb{C}-\mathfrak{Mod}$$

such that

$$H_{\mathbb{C}} = \bigoplus_{p+q=n} \underbrace{F^p \cap \overline{F}^q}_{=:H^{p,q}}.$$

Put $H_{\mathbb{R}} := H_{\mathbb{Z}} \otimes \mathbb{R}$. (Note that conjugation acts on the second factor in the tensor product.)

- ii) Define an \mathbb{R} -linear group action of \mathbb{C}^{\times} on $H_{\mathbb{C}}$ by $s(z, v) = z^{p}\overline{z^{q}}v, v \in H^{p,q}, p+q=n$. One puts $C(-) \coloneqq s(i, -)$.
- iii) A morphism of pure Hodge-structures is a map $H_{\mathbb{Z}} \to H'_{\mathbb{Z}}$ compatible with s.
- iv) The rank of a Hodge structure is the complex dimension of $H_{\mathbb{C}}$.

¹The convention bit here is that a filtration is by standard descending.

v) Define an *R*-Hodge structure for a ring inclusion $\mathbb{Z} \subset R \subset \mathbb{R}$ by exchanging \mathbb{Z} -modules by *R*-modules, and $\otimes_{\mathbb{Z}}$ by \otimes_{R} . In particular, there is the notion of an \mathbb{R} -Hodge structure.

Between Hodge structures of different weights, there is only the zero morphism, due to $s(2, f(u)) = 2^n f(u) = f(s(2, u)) = 2^m f(u).^2$

Lemma 1.3 ([Del71, §2.1.11]). Hodge structures form an abelian category equipped with the obvious internal hom and \otimes . The tensor product is defined by $(H' \otimes H'')_{\mathbb{Z}} = H'_{\mathbb{Z}} \otimes H''_{\mathbb{Z}}$; the filtration \underline{F} is the graded \mathbb{C} -tensor product $F^n = \bigoplus_{p+q=n} F'^p \otimes_{\mathbb{C}} F''^q$ of the respective filtrations $\underline{F}', \underline{F}''$ where n is the sum of the weights of H' and H''; and so is the action s.

The internal hom of two Hodge structures H, H' of the same weight³

$$(\underline{\operatorname{Hom}}(H,H'))_{\mathbb{Z}} = \operatorname{Hom}_{\mathbb{Z}}(H,H'), s(z,f)(x) = s(z,f(s(z^{-1},x))), f \in \underline{\operatorname{Hom}}(H',H'')_{\mathbb{C}}, x \in H''_{\mathbb{C}}.$$

The filtration \underline{F} of $\operatorname{Hom}(H', H'')_{\mathbb{C}}$ is defined by

$$F^{n} = \left\{ f \in \operatorname{Hom}_{\mathbb{C}}(H'_{\mathbb{C}}, H''_{\mathbb{C}}) : f[F^{i}] \subset F^{i+n} \forall i \right\}.$$

(There are also dual spaces and outer products)

Example 1.4. The Tate Hodge structure $\mathbb{Z}(n)$ is the Hodge structure of rank 1 and weight -2n, which is given by

$$H_{\mathbb{Z}} = \mathbb{Z}, F^{-n} = H_{\mathbb{Z}}, F^{n+1} = 0.$$

We have $\mathbb{Z}(n) \cong \mathbb{Z}(1)^{\otimes n}$, which can be seen by counting degrees in the graded tensor product of the filtrations.

 $\mathbb{Z}(n)_{\mathbb{Z}}$ is often understood as the subgroup $(2\pi i)^n \mathbb{Z} \subset \mathbb{C}$, which comes from Cauchy's integral theorem. (I will hopefully return to that later.)

Definition 1.5. A polarization of a weight n Hodge structure is a homomorphism

$$H \otimes H \xrightarrow{(\ ,\)} \mathbb{Z}(-n)$$

such that the real bilinear form on $H_{\mathbb{R}}$ given by $(x, y) \mapsto (x, Cy)$ is symmetric positive definite. An object which admits a polarization (there are no uniqueness restrictions) is called polarizable.⁴

Definition 1.6. Define the homomorphisms $H \to H'$ up to isogeny as $\text{Hom}(H, H') \otimes_{\mathbb{Z}} \mathbb{Q}$. This is equivalent to the morphisms of the category of Hodge structures localized at morphisms which have finite kernel and cokernel on the integral lattices.

 $^{^{2}}$ Any number which is no root of unity could have been chosen instead of 2.

³If H', H'' are of weight n, m, there is a weight m - n Hodge structure $H \coloneqq \operatorname{Hom}(H', H'')$ defined by $H_{\mathbb{Z}} \coloneqq \{f \in \operatorname{Hom}_{\mathbb{Z}}(H'_{\mathbb{Z}}, H''_{\mathbb{Z}}) : f[F'^{n+k}] \subset F''^{m+k+j} \}$ and $F^k \coloneqq \{f \in \operatorname{Hom}_{\mathbb{C}}(H'_{\mathbb{C}}, H''_{\mathbb{C}}) : f[F'^{n+j}] \subset F''^{m+k+j} \forall j \}$. The morphism group of Hodge structures $H' \to H''$ is zero nevertheless.

⁴In the literature, there is often a factor $(2\pi i)^n$ in front of (x, Cy). This comes from the identification of $(2\pi i)^{-n}$ and $\mathbb{Z}(-n)$.

Remark 1.7. ⁵ Polarizations factor through isogeny. The polarizable Hodge structures up to isogeny form a full semi-simple subcategory, i. e. every object is a direct sum of simple objects.⁶ Hence it is closed under internal hom, \otimes , finite \oplus of same weight, subobjects and quotient objects H'/H'' of polarizable Hodge structures H', H''.

Definition 1.8. We form the category \mathfrak{D} of polarized Hodge structures and the induced category \mathfrak{D}' of polarized Hodge structures up to isogeny. A morphism up to isogeny of polarized Hodge structures (H', (,)), (H'', (,)) is an element $f \in \operatorname{Hom}(H', H'') \otimes \mathbb{Q}$ such that under $\operatorname{Hom}(H', H'') \otimes \mathbb{Q} \hookrightarrow \operatorname{Hom}_{\mathbb{R}-\mathfrak{Mo}}(H'_{\mathbb{R}}, H''_{\mathbb{R}})$, the image $H'_{\mathbb{R}} \xrightarrow{f} H''_{\mathbb{R}}$ commutes with (,).

Definition 1.9. A family of weight n pure Hodge structures on $S \in \underline{\mathfrak{Top}}$ is a local system $H_{\mathbb{Z}}$ on S of \mathbb{Z} -modules of finite type, together with a continuously varying filtration $(\underline{F})_s$ of $(H_{\mathbb{C}})_s$ on the stalks, which is a pure Hodge structure on each stalk together with the Hodge filtration $(\underline{F})_s$. (A continuously/smoothly/...varying filtration means that it comes from a map $S \to \mathbb{X}$ satisfying the desired property where \mathbb{X} is a flag space of $H_{\mathbb{C}}$.) Morphisms are given by morphisms of local systems which are stalkwise Hodge structure morphisms.

A polarization is then a local system morphism $H_{\mathbb{Z}} \otimes H_{\mathbb{Z}} \xrightarrow{(,,)} \mathbb{Z}(-n)_{\mathcal{S}}$, where $\mathbb{Z}(-n)_{\mathcal{S}}$ is a constant sheaf together with the constant Hodge filtration, such that the pure Hodge structures on the stalks are $\mathbb{Z}(-n)$.

Note that the continuously varying filtration does NOT need to come from a filtration in the category of \mathbb{C} -local systems.

Remark 1.10. Remark 1.7 applies to families of Hodge structures with little change.

- **Definition 1.11.** i) A mixed Hodge structure is an ascendingly and finitely filtered object $(H_{\mathbb{Z}}, \overline{W}), \overline{W} = (0 \subseteq W_a \subseteq \cdots \subseteq W_b = H_{\mathbb{Z}}), \text{ in } \mathbb{Z} \mathfrak{Mod}_{\text{fin. gen.}}$ together with a filtration \underline{F} of $H_{\mathbb{C}} = H_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$ such that $\operatorname{gr}_n^W \coloneqq W_n H_{\mathbb{Z}}/W_{n-1}H_{\mathbb{Z}}$ is a pure Hodge structure of weight n for each n. The finite ascending filtration \overline{W} is called weight filtration.
 - ii) A family of mixed Hodge structures on S is an ascendingly and finitely filtered object in the category of local systems of finitely generated \mathbb{Z} -modules $(H_{\mathbb{Z}}, \overline{W})$ together with a continuously varying Hodge filtration F_s^i of the stalks $(H_{\mathbb{C}})_s$ such that $\operatorname{gr}_n^W \coloneqq W_n H_{\mathbb{Z}}/W_{n-1}H_{\mathbb{Z}}$ is a family of pure Hodge structures of weight n. The ascending filtration \overline{W} is called weight filtration.
 - iii) The morphisms of families of mixed Hodge structures are local system morphisms compatible with both filtrations.

Lemma 1.12. A morphism of mixed Hodge structures $(H', \overline{W}) \to (H'', \overline{W}')$ induces morphisms of pure Hodge structures $\operatorname{gr}_n^{W'} \to \operatorname{gr}_n^{W''}$.

⁵For the case of fixed polarizations, see also [PS08, Corollary 2.12].

⁶A simple object is an object without any nontrivial subobjects.

Proof. Let $f: (H', \overline{W}') \to (H'', \overline{W}'')$ be a morphism. Since f respects \overline{W} , the maps on the graded pieces $\operatorname{gr}_n^{W'} = W'_n/W'_{n-1}$ are well-defined. f respecting \underline{F} implies that $\left(\operatorname{gr}_n^{W'}\right)^{p,q} = F'^p \operatorname{gr}_n^{W'} \cap \overline{F'^q \operatorname{gr}_n^{W'}}$, where there's p + q = n, is mapped to $\left(\operatorname{gr}_n^{W''}\right)^{p,q}$. It follows from the definition of s that s commutes with f.

There is a variation where W filters the tensor product $H_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$, cf. [Del71, §2.3]. If one generalizes to R-Hodge structures for an arbitrary ring R, W may filter $H_R \otimes_{\mathbb{Z}} \mathbb{Q}$, cf. [PS08, Def. 3.1].

Fact 1.13. For a morphism of families of mixed Hodge structures $\varphi \colon (H_{\mathbb{Z}}, \overline{W}) \to (H'_{\mathbb{Z}}, \overline{W}')$, there is $W'_i \cap \operatorname{Im} \varphi = \varphi[W_i]$.

One calls this strict compatibility.

2 Propositions

Proposition 2.1. For $\tilde{H} \coloneqq (H(,))$ a polarized Hodge structure, $\operatorname{Aut}_{\mathfrak{D}}(\tilde{H})$ is finite.

Proof. Informally speaking, we can put together $\operatorname{Aut}_{\mathfrak{D}}(\tilde{H})$ out of a torsion part and the non-torsion part. There is an exact sequence

$$\mathbf{Aut}_{\mathbb{Z}}(\text{torsion subgroup of } H_{\mathbb{Z}}) \longrightarrow \mathbf{Aut}(\tilde{H}) \longrightarrow \underbrace{\mathbf{Aut}_{\mathbb{Z}}(H_{\mathbb{Z}}/\text{torsion}) \cap \mathbf{Aut}_{\mathbb{R}}(H_{\mathbb{R}}, (,))}_{=:G \subset \text{Gl}(\mathbb{R}^k)}$$

G is the intersection of a discrete group and a compact group (the latter being some kind of orthogonal group, basically), hence finite, rendering $\operatorname{Aut}(\tilde{H})$ finite.

Proposition 2.2. Suppose, $S \in \underline{\mathfrak{Top}}$ is connected and it admits a universal covering S'. Let $(H_{\mathbb{Z}}, F)$ be a polarizable family of Hodge structures over S. If \underline{F} is a sub-local system filtration, there is a finite covering $\pi \colon S'' \xrightarrow{\pi} S$ such that $\pi^*(H_{\mathbb{Z}}, F)$ is a constant family of pure Hodge structures on S''.

Proof. $\pi_1(\mathcal{S}, s_0)$ acts on the stalk $(H_{\mathbb{Z}})_{s_0}$. This action preserves the filtration \underline{F} due to assumption, and it naturally preserves the polarization, as it only comes from a pullback of sheaves. Let $N \coloneqq \ker \left(\pi_1(\mathcal{S}, s_0) \to \operatorname{Aut}(\tilde{H}_{s_0})\right).$

 $\pi_1(\mathcal{S})/N$, due to Proposition 2.1, is finite. We have the corresponding covering $\mathcal{S}'' \xrightarrow{\pi} \mathcal{S}$. As $\pi_1(\mathcal{S}'') \cong N$ acts trivially on the stalks, we conclude that $\pi^*(H_{\mathbb{Z}})$ is constant and thus $\pi^*(H_{\mathbb{C}})$. The constancy of $\pi^*(H_{\mathbb{C}})$ follows from the fact that on \mathcal{S}'' , the operation of $\pi_1(\mathcal{S}, s_0)$ on the stalks is trivial, and hence the monodromy representation is trivial.

Proposition 2.3. For $S \in \underline{\mathfrak{Top}}$ just as in Proposition 2.2, let $(H_{\mathbb{Z}}, W)$ be a family of mixed Hodge structures on S. Let $H_{\mathbb{Z}}$ and every $(\operatorname{gr}_n^W H_{\mathbb{Z}}, F)$ be polarizable. (Due to finiteness, polarizability

of all the graded families actually suffices) Suppose that, like in Proposition 2.2, \underline{F} is a locally constant filtration. (*)

Then there exists a finite covering $\mathcal{S}'' \xrightarrow{\pi} \mathcal{S}$ such that $\pi^*(H_{\mathbb{Z}}, W, F)$ is a constant family of Hodge structures on \mathcal{S}'' .

Proof. Proposition 2.2 yields a finite covering $\mathcal{S}'' \xrightarrow{\pi} \mathcal{S}$ such that the inverse image of any $\operatorname{gr}_n^W H_{\mathbb{Z}}$ is locally constant. The action of $\pi_1(\mathcal{S})$ must be compatible with this constancy, so multiplication with the group ring element $1 - \gamma \in \mathbb{Z}[\pi_1(\mathcal{S})]$ must be zero on $\operatorname{gr}_n^W = W_n H_{\mathbb{Z}}/W_{n-1} H_{\mathbb{Z}} \forall n$, which is equivalent to

$$(1-\gamma)[W_n(H_{\mathbb{Z}})_{s_0}] \subset W_{n-1}(H_{\mathbb{Z}})_{s_0}.$$
(2.1)

Because of (\star) , $1 - \gamma$ is an endomorphism of families of Hodge structures and Fact 1.13, we have

$$(1-\gamma)[W_n] \stackrel{(2.1)}{\subset} W_{n-1}H_{\mathbb{Z}} \subset \operatorname{Im}(1-\gamma) \stackrel{\text{strict compatibility}}{=} (1-\gamma)[W_{n-1}]. \qquad (\star\star)$$

Let *m* be minimal such that $W_m \neq 0$. From $(\star\star)$, it follows that the $1 - \gamma$ homomorphism is zero on W_m and inductively so on all arbitrary W_n , as it is zero on gr^n . Thus $1 - \gamma$ is zero on $H_{\mathbb{Z}}$ which is isomorphic to W_n for $n \gg 0$. Due to the trivial action of $\pi_1(\mathcal{S}'')$, $\pi^*(H_{\mathbb{Z}})$ is constant on \mathcal{S}'' .

3 Hodge structures and cohomology

For now, we have defined the abstract notion of a Hodge structure without actually explaining where it arises from.

Let $X = Y^{an}$ be the complexification of a smooth complex projective variety; or more generally, X^{an} has to be compact Kähler.

Recall 3.1. A Kähler manifold of dimension n is a holomorphic manifold together with a Hermitian (i.e. symmetric sesquilinear) inner product which comes from a smooth 2-form ω such that ω is closed, i.e. $d\omega = 0$.

We now fix ω .

Recall 3.2. We have the isomorphism $\mathrm{H}^{q}(X^{\mathrm{an}},\mathbb{Q}) \hookrightarrow \mathrm{H}^{q}(X^{\mathrm{an}},\mathbb{C}) \cong \mathrm{H}^{q}_{\mathrm{dR}}(X)$. One defines the Laplacian operator $\Delta \colon \Omega^{k}(X) \to \Omega^{k-1}(X)$ by $\delta \circ \mathrm{d} + \mathrm{d} \circ \delta$, where δ is $(-1)^{n(k-1)+n+1} \star \mathrm{d} \star$. (Roughly, to a dual-multivector, the Hodge star \star assigns the orthogonal complement.)

Fact 3.3. In our setup, there is an isomorphism $\underbrace{\ker \Delta}_{\subset \Omega^k(X)} \cong \mathrm{H}^k_{\mathrm{dR}}(X)$.

Since X is Kähler, a harmonic k-form is a \mathbb{C} -linear combination of dual-multivectors $dz_1 \wedge \cdots z_p \wedge \overline{z}_{p+1}$. Hodge's theorem then states that $\mathrm{H}^k_{\mathrm{dR}}(X)$ decomposes to the sub-vector spaces $V^{p,q}$ of (p,q)-forms and those form a pure Hodge structure of weight k with $\mathrm{H}^k(X) = H_{\mathbb{Z}}$.

Remark 3.4. Considering

$$H_{\mathbb{Z}} \coloneqq \mathrm{H}^{*}(X) = \bigoplus_{k} \mathrm{H}^{k}(X), H_{\mathbb{C}} = \bigoplus_{k} \mathrm{H}^{k}_{\mathrm{dR}}(X), W_{k} \coloneqq \bigoplus_{j \leq k} \mathrm{H}^{j}(X),$$

one gets a mixed Hodge structure.

Definition & Fact 3.5.

The Hodge-Riemann bilinear form on $\mathrm{H}^k_{\mathrm{dR}}(X)$ is defined by

$$(\alpha,\beta)\mapsto (-1)^{\binom{k}{2}}\int_X \alpha\wedge\beta\wedge\omega^{n-k}.$$

A covector/a class $\alpha \in \mathrm{H}^k_{\mathrm{dR}}(X)$ is called primitive : $\Leftrightarrow \omega^{\wedge n-k+1}\alpha = 0$. This leads to the primitive cohomology

$$\mathrm{H}^{k}_{\mathrm{prim}}(X) \coloneqq \ker\left(\alpha \mapsto \omega^{\wedge (n-k+1)}\alpha\right)$$

Decomposing

$$\mathrm{H}^k_{\mathrm{dR}}(X) = \bigoplus_{i \geq \max(k-n,0)} \omega^{k-i} \wedge \mathrm{H}^i_{\mathrm{prim}},$$

the Hodge-Riemann form is a polarization of \mathbb{R} -Hodge structures on every summand (and hence on $\mathrm{H}^{k}_{\mathrm{dR}}(X) \cong \mathrm{H}^{k}(X; \mathbb{R})$.)

- Example 3.6. i) The Tate Hodge structure $\mathbb{R}[-n]$ is a fitting Hodge structure to the cohomology $\mathrm{H}^{2n}(X)$ of a compact complex manifold X.
 - ii) The generator of $H^1(\mathbb{C}^{\times})$ is the unit circle, which, when integrated, yields the canonical generator of $H_{dR}(\mathbb{C}^{\times})$ multiplied by $2\pi i$.

References

- [Del71] Pierre Deligne. <u>Théorie de Hodge : II</u>. fr. In: Publications Mathématiques de l'IHÉS 40 (1971), pp. 5–57. URL: https://www.numdam.org/item/PMIHES_1971__40__5_0/.
- [Kat72] Nicholas M. Katz. <u>Algebraic solutions of differential equations (p-curvature and the Hodge filtration)</u>. In: Inventiones mathematicae 18.1 (Mar. 1972), pp. 1–118. URL: https://doi.org/10.1007/BF01389714.
- [PS08] Chris A.M. Peters and Joseph H.M. Steenbrink. <u>Mixed Hodge Structures</u>. Springer, 2008.