
The set |Y | and the untilts of OF

The following are notes for a talk I gave on 12.11.2025 in the seminar “The Fargues–Fontaine curve
and p-adic Hodge theory”, see the program. The main reference for this talk was [Ans, §5], and I took
some extra inspiration from [Lur, Lectures 1-3, 17]. I added missing details to some of the arguments,

but none of this is original work. I hope you enjoy reading this. Comments are always welcome!

Daan van Sonsbeek

Throughout the talk, p is some prime and E is a finite extension of Qp. Denote by OE the ring
of integers of E and let π ∈ OE be a uniformiser. Let q = #(OE/(π)). We will write
Fq = OE/(π).

That which came before

We recall the important content of the previous talks. To any π-complete OE-algebra A we
can associate its tilt

A♭ = lim←−
x 7→xq

A/π,

i.e. the perfection of its reduction mod π. It comes with a multiplicative map

♯ : A♭ → A,

given by lifting any (. . . , x1, x0) ∈ A♭ to a sequence (x̃0, x̃1, . . . ) in A and taking the limit

limi→∞ x̃qi

i . Conversely, to any perfect Fq-algebra R we can associate its (ramified) Witt vectors
WOE(R). There is an adjunction between taking Witt vectors and taking flats, whose counit is
given by Fontaine’s map

θA : WOE(A♭) −→ A,
∞

∑
i=0

[ai]π
i 7−→

∞

∑
i=0

a♯i πi.

Let C now be some complete, algebraically closed, non-archimedean field extension of E with
valuation vC. Let OC = {c ∈ C | v(c) ≥ 0} be its valuation ring. Then any element of OC can
be expressed in the form ∑∞

i=0 c♯i πi with ci ∈ O♭
C, i.e. θOC is surjective. Additionally, ker θOC is

principal and generated by some (non-unit) distinguished element d ∈WOE(O
♭
C). This exhibits

OC as a particular example of a perfectoid OE-algebra, which is an OE-algebra isomorphic to a
quotient WOE(R)/I, where R is a perfect Fq-algebra and (WOE(R), I) is a perfect prism. That
means, I is an ideal generated by a distinguished element and WOE(R) is I-adically complete.
We have seen that these distinguished elements are always of the form uπ − [r0], where
u ∈WOE(R)× and R is r0-adically complete.

Finally, O♭
C is a valuation ring with associated valuation vC ◦ ♯. It is complete with respect to

this valuation and Frac(O♭
C) is algebraically closed. The central question of this talk is the

following:

If we instead fix some complete, algebraically closed, non-archimedean field F with ring of
integers OF , what can we say about the perfectoid OE-algebras that tilt to OF ?
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The answer is in fact that any such perfectoid OE-algebra is again the ring of integers in a
complete, algebraically closed, non-archimedean field, either F or an extension of E. On top
of that, the valuation on these perfectoid OE-algebras is related to the one on OF by
composition with the sharp map.

Tilting and untilting perfectoid spaces

Let R be a perfect Fq-algebra.

Definition 1. An untilt of R is a pair (A, i), where A is a perfectoid OE-algebra and
i : A♭ ∼= R is an isomorphism. A morphism of untilts f : (A, i)→ (B, j) is a morphism
f : A→ B of OE-algebras with f ♭ = j−1 ◦ i. Denote the category of untilts of R by Untilts(R)

To determine the untilts of R, we first determine the tilts of the perfectoid algebra W(R)/I.

Lemma 2. Let (WOE(R), I) be a perfect prism. Then (WOE(R)/I)♭ ∼= R. Under this isomorphism,
Fontaine’s map θ translates to the projection and the sharp map ♯ translates to the reduction of the
Teichmüller lift mod I.

Proof. By a theorem of one of the previous talks, we establish an isomorphism

R −→ (R/IR)♭,

r 7−→ (. . . , r1/q mod IR, r mod IR).

Now, we find the isomorphism

φ : R ∼= (R/IR)♭ ∼= (WOE(R)/((π) + I))♭ ∼= (WOE(R)/I)♭,

given explicitly by φ(r) = (. . . , [r1/q], [r]), where the reductions are taken mod (π) + I. The
second part of the lemma says that the diagram

R WOE(R)

(WOE(R)/I)♭ WOE((WOE(R)/I)♭) WOE(R)/I

[·]

φ WOE (φ)

[·]

♯

θ

commutes. Since the left square obviously commutes, we check that the right triangle
commutes. It suffices to check this on Teichmüller lifts [r] ∈WOE(R). For these elements,
commutativity of the diagram means precisely that

(. . . , [r1/q], [r])♯ = [r] mod I,

which is immediate from the construction of the sharp map. ■

Remark. Lemma 2 tells us two things:
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(1) A perfectoid OE-algebra A is an untilt of R if and only if it is of the form WOE(R)/I for
some perfect prism (WOE(R), I).

(2) If A is perfectoid, then (ker θA, WOE(A♭)) is a perfect prism and isomorphic to any other
perfect prism defining A. ⌟

Let now (A, i) be an untilt of R. Consider Fontaine’s map θA : WOE(A♭)→ A and precompose
it with the isomorphism WOE(i

−1) : WOE(A♭)→WOE(R). As (ker θA, WOE(A♭)) is a perfect
prism, so is (WOE(R), ker(θA ◦WOE(i

−1))). We obtain the following identification.

Proposition 3. The above map induces a bijection

Untilts(R)/∼= −→ {I ⊆WOE(R) | (WOE(R), I) perfect prism},
(A, i) 7−→ ker(θA ◦W(i−1)).

Proof. The above remark already shows that this map is surjective. We will show that it is
well-defined and injective. For well-definedness, let f : (A, i)→ (B, j) be an isomorphism of
untilts. Then WOE( f ♭) = WOE(j−1) ◦WOE(i) is an isomorphism of OE-algebras which maps
ker θA onto ker θB. On the contrary, if (A, i) and (B, j) map to the same ideal I ⊆WOE(R).
Then the isomorphism WOE(j−1 ◦ i) maps ker θA onto ker θB. By two-out-of-three, the
induced map f : A→ B on the cokernels is an isomorphism as well. As θB is the counit of the
Witt vector-flat adjunction, it follows that W( f ♭) = W(j−1 ◦ i) hence by fully faithfulness of
WOE that f ♭ = j−1 ◦ i. ■

Remark. Note that, up to isomorphism, there is a unique positive characteristic untilt of R,
namely (R, idR). Under the identification in Proposition 3, it corresponds to the ideal (π).

Untilting certain valuation rings

Let now F/Fq be some complete, algebraically closed, non-archimedean field with valuation
vF. Let OF = {x ∈ F | vF(x) ≥ 0} be its associated valuation ring and
mF = {x ∈ OF | vF(x) > 0} its maximal ideal. Recall that we defined Ainf = WOE(OF), as
well as |Y|[0,∞) = {I ⊆ Ainf | (Ainf, I) perfect prism} and |Y| = |Y|[0,∞) \ {(π)}. Here, the
idea is to interpret the elements of Ainf to be regular functions on |Y|[0,∞). By the results of
the previous sections, the elements I of |Y|[0,∞) are in one to one correspondence with the
(isomorphism classes of) untilts Ainf/I. Under this correspondence, the elements I of |Y| are
precisely the characteristic zero untilts. The main result of this talk is now the following:

Theorem 4. Let I ∈ |Y|. Then Ainf/I is the valuation ring of a complete, algebraically closed,
non-archimedean field extension of E.

Note in particular that Ainf/I is a domain, so every I ∈ |Y|[0,∞) is a prime ideal. Theorem 4
says practically that every residue field carries a valuation. Before we prove Theorem 4, we
prove some auxiliary results.

Recall that any ideal I ∈ |Y| is generated by an element d = uπ − [d0], with u ∈ A×inf and
d0 ∈ mF \ {0} (as OF is d0-complete if and only if d0 ∈ mF). Write D = Ainf/(d).

Lemma 5. (i) The OE-algebra D is π-complete.
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(ii) The OE-algebra D is π-torsion free.

(iii) The map

D −→ D,

x 7−→ xp

is surjective.

Proof. (i) As Ainf is π-complete, the quotient D is derived π-complete. As d is distinguished,
D has bounded π-torsion and is therefore also π-complete.

(ii) We have the following general fact for commutative rings R: if (r, s) is a regular
sequence in R and R is r-complete, then (s, r) is a regular sequence in R.

Note that, as d0 ̸= 0, the element d ∈ Ainf/(π) = OF is not a zero divisor. Hence, (π, d)
is regular in Ainf. By the above general fact, it follows that (d, π) is regular as well. It
follows that π is not a zero divisor in Ainf/(d), in other words that Ainf/(d) is π-torsion
free.

Finally, for completeness, we prove the general fact. We use that an element x is a zero
divisor if and only if the multiplication-by-x map is not an injection. Hence, we know

that the map R/(r) ·s−→ R/(r) is an injection. From this, it follows that R/(r2)
·s−→ R/(r2)

is an injection as well. After all, suppose a ∈ R satisfies as ∈ (r2). Then a ∈ (r), say
a = br. Since r is not a zero divisor in R, it now follows from brs ∈ (r2) that bs ∈ (r), i.e.

b ∈ (r) and a ∈ (r2). Repeating that argument, every map R/(rn)
·s−→ R/(rn) is an

injection and, passing to the limit, using that R is r-complete, the map R ·s−→ R is injective.
Hence s is not a zero divisor in R. Now, applying the Nine Lemma to the diagram

0 0 0

0 R R R/(r) 0

0 R R R/(r) 0

R/(s) R/(s) R/(r, s) 0

0 0 0

·r

·s ·s ·s
·r

·r

yields that the map R/(s) ·r−→ R/(s) is injective, i.e. r ∈ R/(s) is not a zero divisor.

(iii) (Sketch) It suffices to prove the statement in case E = Qp and π = p. The general case
can be derived from this using the norm map. We also assume p ̸= 2. The case p = 2 is
resolved by changing all twos in the proof by threes.
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We use the description of the sharp map from Lemma 2. It is clear that every element z♯

admits the p-th root (z1/p)♯, given that F is algebraically closed and OF is its valuation
ring. Therefore, it suffices to prove the statement up to multiplication with elements of
the form z♯ with z ∈ OF. Given that d♯0 = up mod d and D is p-complete, it is also
d♯0-complete. This means that we can write any x ∈ D in the form x = ∑∞

i=0 x♯i · (d
♯
0)

i,
where vF(xi) < vF(d0). We may assume up to multiplication with sharps that x♯0 ̸= 0.
Then, multiplying with (x♯0)

−1 (note, crucially, that this product is still an element of D),
we may assume that x ∈ 1 + (p,m♯

F). Now, by explicit computation, we can find some
z ∈ O×F such that x ≡ z♯ mod p2. This computation uses the fact that F is algebraically
closed. Multiplying with (z−1)♯, we may assume that x ∈ 1 + (p2), all whose elements
have a p-th root. ■

Finally, we can prove Theorem 4.

Proof of Theorem 4. Consider the multiplicative map ♯ : OF → D. Recall that it sends any
x ∈ OF to x♯ mod d. Note that his map only sends zero to zero. By Lemma 5.(iii), ♯ is
surjective. After all, if y ∈ D, then all y1/qi

are in D, hence (. . . , y1/q mod π, y mod π)♯ = y.
Given that d♯0 = uπ mod d, the map extends to a surjective, multiplicative map
♯ : OF[

1
d0
]→ D[ 1

π ]. Note that D[ 1
π ] is not the zero ring, as D is π-torsion free by 5.(ii).

We now deduce a lot of structure on D and D[ 1
π ] from that on OF[

1
d0
]. For instance, D[ 1

π ] is a

field as OF[
1
d0
] = F is: any nonzero y = x♯ ∈ D has inverse (x−1)♯. This means in particular

that D is a domain and D[ 1
π ] = Frac(D). Also, for any y = x♯ ∈ D[ 1

π ], either x or x−1 is in
OF, hence either y or y−1 = (x−1)♯ is in D. Therefore, D is a valuation ring.

We will go one step further and explicitly determine the valuation on D. To do this, we show
that x♯1 | x♯2 in D if and only if x1 | x2 in OF. Since the ‘if’ part is clear, we prove the ‘only if’
part, so let x1, x2 ∈ OF \ {0} be such that x♯1 | x♯2 and assume x1 ∤ x2 (the case were either
element is zero can immediately be observed to be true). Then, as OF is a valuation ring,
x1 | x2, say x2 = tx1, where t ∈ mF. This means that x♯2 = t♯x♯1. It follows by the assumptions
that t♯ is a unit. However, the sharp map induces an isomorphism OF/(d0)→ D/(π). Since t
is a nilpotent element on the left but t♯ is a unit on the right, we obtain a contradiction.

We now define the map

vD : D −→ R∪ {∞},
x♯ 7−→ vF(x).

Note that this map is well-defined: if any two elements x, x′ map to the same element in D
under ♯, then they must differ by a unit. Also note that vD(y) ≤ vD(y′) if and only if y | y′.
One can now show that vD in fact extends to a valuation on D[ 1

π ] with valuation ring D.

Finally it remains to show that D[ 1
π ] is an algebraically closed and complete field extension of

E. As π ̸= 0 in D and OE[
1
π ] = E, it is immediately clear that D[ 1

π ] is an E-algebra (i.e. a field
extension). Completeness with respect to the valuation topology induced by vD follows from
the fact that its valuation ring D is π-adically complete (by Lemma 5.(i)) and π ̸= 0 has
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valuation vD(π) = vF(d0) > 0. To prove that D[ 1
π ] is algebraically closed, we consider an

irreducible polynomial
P = Tm + bm−1Tm−1 + · · ·+ b0 ∈ D[T]

and show that it has zero. Given that D/(π) = OF/(d0), let Q ∈ OF[T] be a polynomial such
that P ≡ Q in D/(π)[T] = OF/(d0)[T]. Then Q has a zero in OF (since the constant term of Q
is, up to negatives, the product of all zeroes), call it z0. It follows that P(T + z♯0) is irreducible
and must have constant term P(z♯0) divisible by π. Let c1 ∈ D be such that

vD(c1) =
vD(P(z♯0))

m ≥ vD(π)
m . Such an element exists as vD(D[ 1

π ]
×) = vF(F×) and vF(F×) is

divisible as F is algebraically closed. Define

P1 = c−m
1 P(z♯0 + c1T).

It is still irreducible and it therefore has coefficients in D, as the leading and constant
coefficient are in D. Repeating the above process, we can find z1 ∈ OF with
vD(P1(z

♯
1)) ≥ vD(π), which means that vD(P(z♯0 + c1z♯1)) ≥ mvD(c1) + vD(π) ≥ 2vD(π). Note

that vD(c1z♯1) ≥
vD(π)

m . Repeating this one more time yields a c2 ∈ D with vD(c2) ≥ vD(π)
m and

a z2 ∈ OF such that vD(P(z♯0 + c1z♯1 + c1c2z♯2)) ≥ 3vD(π). Note that vD(c1c2z♯2) ≥ 2 vD(π)
m . We

can see now that repeating this process yields a sequence (sn)n≥0 in D with
vD(sn − sn−1) ≥ n vD(π)

m and vD(P(sn)) ≥ (n + 1)vD(π). Hence, this process yields a zero of P
in the limit. ■
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