The set |Y| and the untilts of \mathcal{O}_F

The following are notes for a talk I gave on 12.11.2025 in the seminar "The Fargues—Fontaine curve and p-adic Hodge theory", see the <u>program</u>. The main reference for this talk was [Ans, §5], and I took some extra inspiration from [Lur, Lectures 1-3, 17]. I added missing details to some of the arguments, but none of this is original work. I hope you enjoy reading this. Comments are always welcome!

Daan van Sonsbeek

Throughout the talk, p is some prime and E is a finite extension of \mathbb{Q}_p . Denote by \mathcal{O}_E the ring of integers of E and let $\pi \in \mathcal{O}_E$ be a uniformiser. Let $q = \#(\mathcal{O}_E/(\pi))$. We will write $\mathbb{F}_q = \mathcal{O}_E/(\pi)$.

That which came before

We recall the important content of the previous talks. To any π -complete \mathcal{O}_E -algebra A we can associate its tilt

$$A^{\flat} = \varprojlim_{x \mapsto x^q} A/\pi,$$

i.e. the perfection of its reduction mod π . It comes with a multiplicative map

$$\sharp\colon A^{\flat}\to A$$
,

given by lifting any $(..., x_1, x_0) \in A^{\flat}$ to a sequence $(\tilde{x}_0, \tilde{x}_1, ...)$ in A and taking the limit $\lim_{i \to \infty} \tilde{x}_i^{q^i}$. Conversely, to any perfect \mathbb{F}_q -algebra R we can associate its (ramified) Witt vectors $W_{\mathcal{O}_E}(R)$. There is an adjunction between taking Witt vectors and taking flats, whose counit is given by Fontaine's map

$$\theta_A \colon W_{\mathcal{O}_E}(A^{\flat}) \longrightarrow A,$$

$$\sum_{i=0}^{\infty} [a_i] \pi^i \longmapsto \sum_{i=0}^{\infty} a_i^{\sharp} \pi^i.$$

Let C now be some complete, algebraically closed, non-archimedean field extension of E with valuation v_C . Let $\mathcal{O}_C = \{c \in C \mid v(c) \geq 0\}$ be its valuation ring. Then any element of \mathcal{O}_C can be expressed in the form $\sum_{i=0}^{\infty} c_i^{\dagger} \pi^i$ with $c_i \in \mathcal{O}_C^{\flat}$, i.e. $\theta_{\mathcal{O}_C}$ is surjective. Additionally, $\ker \theta_{\mathcal{O}_C}$ is principal and generated by some (non-unit) distinguished element $d \in W_{\mathcal{O}_E}(\mathcal{O}_C^{\flat})$. This exhibits \mathcal{O}_C as a particular example of a perfectoid \mathcal{O}_E -algebra, which is an \mathcal{O}_E -algebra isomorphic to a quotient $W_{\mathcal{O}_E}(R)/I$, where R is a perfect \mathbb{F}_q -algebra and $(W_{\mathcal{O}_E}(R),I)$ is a perfect prism. That means, I is an ideal generated by a distinguished element and $W_{\mathcal{O}_E}(R)$ is I-adically complete. We have seen that these distinguished elements are always of the form $u\pi - [r_0]$, where $u \in W_{\mathcal{O}_E}(R)^{\times}$ and R is r_0 -adically complete.

Finally, \mathcal{O}_C^{\flat} is a valuation ring with associated valuation $v_C \circ \sharp$. It is complete with respect to this valuation and $\operatorname{Frac}(\mathcal{O}_C^{\flat})$ is algebraically closed. The central question of this talk is the following:

If we instead fix some complete, algebraically closed, non-archimedean field F with ring of integers \mathcal{O}_F , what can we say about the perfectoid \mathcal{O}_E -algebras that tilt to \mathcal{O}_F ?

The answer is in fact that any such perfectoid \mathcal{O}_E -algebra is again the ring of integers in a complete, algebraically closed, non-archimedean field, either F or an extension of E. On top of that, the valuation on these perfectoid \mathcal{O}_E -algebras is related to the one on \mathcal{O}_F by composition with the sharp map.

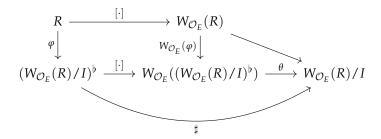
Tilting and untilting perfectoid spaces

Let R be a perfect \mathbb{F}_q -algebra.

Definition 1. An *untilt* of R is a pair (A,i), where A is a perfectoid \mathcal{O}_E -algebra and $i: A^{\flat} \cong R$ is an isomorphism. A morphism of untilts $f: (A,i) \to (B,j)$ is a morphism $f: A \to B$ of \mathcal{O}_E -algebras with $f^{\flat} = j^{-1} \circ i$. Denote the category of untilts of R by $\mathbf{Untilts}(R)$

To determine the untilts of R, we first determine the tilts of the perfectoid algebra W(R)/I.

Lemma 2. Let $(W_{\mathcal{O}_E}(R), I)$ be a perfect prism. Then $(W_{\mathcal{O}_E}(R)/I)^{\flat} \cong R$. Under this isomorphism, Fontaine's map θ translates to the projection and the sharp map \sharp translates to the reduction of the Teichmüller lift mod I.


Proof. By a theorem of one of the previous talks, we establish an isomorphism

$$R \longrightarrow (R/IR)^{\flat},$$

 $r \longmapsto (\dots, r^{1/q} \mod IR, r \mod IR).$

Now, we find the isomorphism

$$\varphi \colon R \cong (R/IR)^{\flat} \cong (W_{\mathcal{O}_E}(R)/((\pi)+I))^{\flat} \cong (W_{\mathcal{O}_E}(R)/I)^{\flat},$$

given explicitly by $\varphi(r) = (\dots, \overline{[r^{1/q}]}, \overline{[r]})$, where the reductions are taken mod $(\pi) + I$. The second part of the lemma says that the diagram

commutes. Since the left square obviously commutes, we check that the right triangle commutes. It suffices to check this on Teichmüller lifts $[r] \in W_{\mathcal{O}_E}(R)$. For these elements, commutativity of the diagram means precisely that

$$(\ldots, \overline{[r^{1/q}]}, \overline{[r]})^{\sharp} = [r] \bmod I,$$

which is immediate from the construction of the sharp map.

Remark. Lemma 2 tells us two things:

- (1) A perfectoid \mathcal{O}_E -algebra A is an untilt of R if and only if it is of the form $W_{\mathcal{O}_E}(R)/I$ for some perfect prism $(W_{\mathcal{O}_E}(R), I)$.
- (2) If A is perfectoid, then $(\ker \theta_A, W_{\mathcal{O}_E}(A^{\flat}))$ is a perfect prism and isomorphic to any other perfect prism defining A.

Let now (A, i) be an untilt of R. Consider Fontaine's map $\theta_A \colon W_{\mathcal{O}_E}(A^{\flat}) \to A$ and precompose it with the isomorphism $W_{\mathcal{O}_E}(i^{-1}) \colon W_{\mathcal{O}_E}(A^{\flat}) \to W_{\mathcal{O}_E}(R)$. As $(\ker \theta_A, W_{\mathcal{O}_E}(A^{\flat}))$ is a perfect prism, so is $(W_{\mathcal{O}_F}(R), \ker(\theta_A \circ W_{\mathcal{O}_F}(i^{-1})))$. We obtain the following identification.

Proposition 3. The above map induces a bijection

Untilts(
$$R$$
)/ $\cong \longrightarrow \{I \subseteq W_{\mathcal{O}_E}(R) \mid (W_{\mathcal{O}_E}(R), I) \text{ perfect prism}\},$
(A, i) $\longmapsto \ker(\theta_A \circ W(i^{-1})).$

Proof. The above remark already shows that this map is surjective. We will show that it is well-defined and injective. For well-definedness, let $f:(A,i)\to (B,j)$ be an isomorphism of untilts. Then $W_{\mathcal{O}_E}(f^{\flat})=W_{\mathcal{O}_E}(j^{-1})\circ W_{\mathcal{O}_E}(i)$ is an isomorphism of \mathcal{O}_E -algebras which maps $\ker\theta_A$ onto $\ker\theta_B$. On the contrary, if (A,i) and (B,j) map to the same ideal $I\subseteq W_{\mathcal{O}_E}(R)$. Then the isomorphism $W_{\mathcal{O}_E}(j^{-1}\circ i)$ maps $\ker\theta_A$ onto $\ker\theta_B$. By two-out-of-three, the induced map $f\colon A\to B$ on the cokernels is an isomorphism as well. As θ_B is the counit of the Witt vector-flat adjunction, it follows that $W(f^{\flat})=W(j^{-1}\circ i)$ hence by fully faithfulness of $W_{\mathcal{O}_E}$ that $f^{\flat}=j^{-1}\circ i$.

Remark. Note that, up to isomorphism, there is a unique positive characteristic until of R, namely (R, id_R) . Under the identification in Proposition 3, it corresponds to the ideal (π) .

Untilting certain valuation rings

Let now F/\mathbb{F}_q be some complete, algebraically closed, non-archimedean field with valuation v_F . Let $\mathcal{O}_F = \{x \in F \mid v_F(x) \geq 0\}$ be its associated valuation ring and $\mathfrak{m}_F = \{x \in \mathcal{O}_F \mid v_F(x) > 0\}$ its maximal ideal. Recall that we defined $\mathbb{A}_{\inf} = W_{\mathcal{O}_E}(\mathcal{O}_F)$, as well as $|Y|_{[0,\infty)} = \{I \subseteq \mathbb{A}_{\inf} \mid (\mathbb{A}_{\inf}, I) \text{ perfect prism}\}$ and $|Y| = |Y|_{[0,\infty)} \setminus \{(\pi)\}$. Here, the idea is to interpret the elements of \mathbb{A}_{\inf} to be regular functions on $|Y|_{[0,\infty)}$. By the results of the previous sections, the elements I of $|Y|_{[0,\infty)}$ are in one to one correspondence with the (isomorphism classes of) untilts \mathbb{A}_{\inf}/I . Under this correspondence, the elements I of |Y| are precisely the *characteristic zero* untilts. The main result of this talk is now the following:

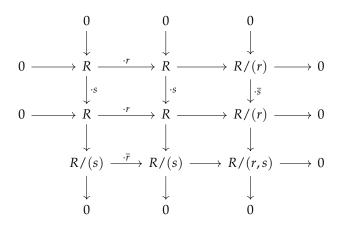
Theorem 4. Let $I \in |Y|$. Then \mathbb{A}_{inf}/I is the valuation ring of a complete, algebraically closed, non-archimedean field extension of E.

Note in particular that \mathbb{A}_{\inf}/I is a domain, so every $I \in |Y|_{[0,\infty)}$ is a prime ideal. Theorem 4 says practically that every residue field carries a valuation. Before we prove Theorem 4, we prove some auxiliary results.

Recall that any ideal $I \in |Y|$ is generated by an element $d = u\pi - [d_0]$, with $u \in \mathbb{A}_{\inf}^{\times}$ and $d_0 \in \mathfrak{m}_F \setminus \{0\}$ (as \mathcal{O}_F is d_0 -complete if and only if $d_0 \in \mathfrak{m}_F$). Write $D = \mathbb{A}_{\inf}/(d)$.

Lemma 5. (i) The \mathcal{O}_E -algebra D is π -complete.

- (ii) The \mathcal{O}_E -algebra D is π -torsion free.
- (iii) The map


$$D \longrightarrow D$$
, $r \longmapsto r^p$

is surjective.

- *Proof.* (i) As \mathbb{A}_{inf} is π -complete, the quotient D is *derived* π -complete. As d is distinguished, D has bounded π -torsion and is therefore also π -complete.
- (ii) We have the following general fact for commutative rings R: if (r,s) is a regular sequence in R and R is r-complete, then (s,r) is a regular sequence in R.

Note that, as $d_0 \neq 0$, the element $\overline{d} \in \mathbb{A}_{\inf}/(\pi) = \mathcal{O}_F$ is not a zero divisor. Hence, (π, d) is regular in \mathbb{A}_{\inf} . By the above general fact, it follows that (d, π) is regular as well. It follows that π is not a zero divisor in $\mathbb{A}_{\inf}/(d)$, in other words that $\mathbb{A}_{\inf}/(d)$ is π -torsion free.

Finally, for completeness, we prove the general fact. We use that an element x is a zero divisor if and only if the multiplication-by-x map is not an injection. Hence, we know that the map $R/(r) \stackrel{\cdot \bar{s}}{\to} R/(r)$ is an injection. From this, it follows that $R/(r^2) \stackrel{\cdot \bar{s}}{\to} R/(r^2)$ is an injection as well. After all, suppose $a \in R$ satisfies $as \in (r^2)$. Then $a \in (r)$, say a = br. Since r is not a zero divisor in R, it now follows from $brs \in (r^2)$ that $bs \in (r)$, i.e. $b \in (r)$ and $a \in (r^2)$. Repeating that argument, every map $R/(r^n) \stackrel{\cdot \bar{s}}{\to} R/(r^n)$ is an injection and, passing to the limit, using that R is r-complete, the map $R \stackrel{\cdot s}{\to} R$ is injective. Hence s is not a zero divisor in R. Now, applying the Nine Lemma to the diagram

yields that the map $R/(s) \xrightarrow{\bar{r}} R/(s)$ is injective, i.e. $\bar{r} \in R/(s)$ is not a zero divisor.

(iii) (Sketch) It suffices to prove the statement in case $E = \mathbb{Q}_p$ and $\pi = p$. The general case can be derived from this using the norm map. We also assume $p \neq 2$. The case p = 2 is resolved by changing all twos in the proof by threes.

We use the description of the sharp map from Lemma 2. It is clear that every element z^{\sharp} admits the p-th root $(z^{1/p})^{\sharp}$, given that F is algebraically closed and \mathcal{O}_F is its valuation ring. Therefore, it suffices to prove the statement up to multiplication with elements of the form z^{\sharp} with $z \in \mathcal{O}_F$. Given that $d_0^{\sharp} = up \mod d$ and D is p-complete, it is also d_0^{\sharp} -complete. This means that we can write any $x \in D$ in the form $x = \sum_{i=0}^{\infty} x_i^{\sharp} \cdot (d_0^{\sharp})^i$, where $v_F(x_i) < v_F(d_0)$. We may assume up to multiplication with sharps that $x_0^{\sharp} \neq 0$. Then, multiplying with $(x_0^{\sharp})^{-1}$ (note, crucially, that this product is still an element of D), we may assume that $x \in 1 + (p, \mathfrak{m}_F^{\sharp})$. Now, by explicit computation, we can find some $z \in \mathcal{O}_F^{\times}$ such that $x \equiv z^{\sharp} \mod p^2$. This computation uses the fact that F is algebraically closed. Multiplying with $(z^{-1})^{\sharp}$, we may assume that $x \in 1 + (p^2)$, all whose elements have a p-th root.

Finally, we can prove Theorem 4.

Proof of Theorem 4. Consider the multiplicative map $\sharp\colon \mathcal{O}_F\to D$. Recall that it sends any $x\in\mathcal{O}_F$ to x^\sharp mod d. Note that his map only sends zero to zero. By Lemma 5.(iii), \sharp is surjective. After all, if $y\in D$, then all y^{1/q^i} are in D, hence $(\ldots,y^{1/q}$ mod π,y mod π) $\sharp=y$. Given that $d_0^\sharp=u\pi$ mod d, the map extends to a surjective, multiplicative map $\sharp\colon \mathcal{O}_F[\frac{1}{d_0}]\to D[\frac{1}{\pi}]$. Note that $D[\frac{1}{\pi}]$ is *not* the zero ring, as D is π -torsion free by 5.(ii).

We now deduce a lot of structure on D and $D[\frac{1}{\pi}]$ from that on $\mathcal{O}_F[\frac{1}{d_0}]$. For instance, $D[\frac{1}{\pi}]$ is a field as $\mathcal{O}_F[\frac{1}{d_0}] = F$ is: any nonzero $y = x^{\sharp} \in D$ has inverse $(x^{-1})^{\sharp}$. This means in particular that D is a domain and $D[\frac{1}{\pi}] = \operatorname{Frac}(D)$. Also, for any $y = x^{\sharp} \in D[\frac{1}{\pi}]$, either x or x^{-1} is in \mathcal{O}_F , hence either y or $y^{-1} = (x^{-1})^{\sharp}$ is in D. Therefore, D is a valuation ring.

We will go one step further and explicitly determine the valuation on D. To do this, we show that $x_1^{\sharp} \mid x_2^{\sharp}$ in D if and only if $x_1 \mid x_2$ in \mathcal{O}_F . Since the 'if' part is clear, we prove the 'only if' part, so let $x_1, x_2 \in \mathcal{O}_F \setminus \{0\}$ be such that $x_1^{\sharp} \mid x_2^{\sharp}$ and assume $x_1 \nmid x_2$ (the case were either element is zero can immediately be observed to be true). Then, as \mathcal{O}_F is a valuation ring, $x_1 \mid x_2$, say $x_2 = tx_1$, where $t \in \mathfrak{m}_F$. This means that $x_2^{\sharp} = t^{\sharp}x_1^{\sharp}$. It follows by the assumptions that t^{\sharp} is a unit. However, the sharp map induces an isomorphism $\mathcal{O}_F/(d_0) \to D/(\pi)$. Since t is a nilpotent element on the left but t^{\sharp} is a unit on the right, we obtain a contradiction.

We now define the map

$$v_D \colon D \longrightarrow \mathbb{R} \cup \{\infty\},$$

 $x^{\sharp} \longmapsto v_F(x).$

Note that this map is well-defined: if any two elements x, x' map to the same element in D under \sharp , then they must differ by a unit. Also note that $v_D(y) \le v_D(y')$ if and only if $y \mid y'$. One can now show that v_D in fact extends to a valuation on $D[\frac{1}{\pi}]$ with valuation ring D.

Finally it remains to show that $D[\frac{1}{\pi}]$ is an algebraically closed and complete field extension of E. As $\pi \neq 0$ in D and $\mathcal{O}_E[\frac{1}{\pi}] = E$, it is immediately clear that $D[\frac{1}{\pi}]$ is an E-algebra (i.e. a field extension). Completeness with respect to the valuation topology induced by v_D follows from the fact that its valuation ring D is π -adically complete (by Lemma 5.(i)) and $\pi \neq 0$ has

valuation $v_D(\pi) = v_F(d_0) > 0$. To prove that $D[\frac{1}{\pi}]$ is algebraically closed, we consider an irreducible polynomial

$$P = T^m + b_{m-1}T^{m-1} + \dots + b_0 \in D[T]$$

and show that it has zero. Given that $D/(\pi)=\mathcal{O}_F/(d_0)$, let $Q\in\mathcal{O}_F[T]$ be a polynomial such that $P\equiv Q$ in $D/(\pi)[T]=\mathcal{O}_F/(d_0)[T]$. Then Q has a zero in \mathcal{O}_F (since the constant term of Q is, up to negatives, the product of all zeroes), call it z_0 . It follows that $P(T+z_0^\sharp)$ is irreducible and must have constant term $P(z_0^\sharp)$ divisible by π . Let $c_1\in D$ be such that

 $v_D(c_1) = \frac{v_D(P(z_0^\sharp))}{m} \geq \frac{v_D(\pi)}{m}$. Such an element exists as $v_D(D[\frac{1}{\pi}]^\times) = v_F(F^\times)$ and $v_F(F^\times)$ is divisible as F is algebraically closed. Define

$$P_1 = c_1^{-m} P(z_0^{\sharp} + c_1 T).$$

It is still irreducible and it therefore has coefficients in D, as the leading and constant coefficient are in D. Repeating the above process, we can find $z_1 \in \mathcal{O}_F$ with $v_D(P_1(z_1^\sharp)) \geq v_D(\pi)$, which means that $v_D(P(z_0^\sharp + c_1 z_1^\sharp)) \geq m v_D(c_1) + v_D(\pi) \geq 2 v_D(\pi)$. Note that $v_D(c_1 z_1^\sharp) \geq \frac{v_D(\pi)}{m}$. Repeating this one more time yields a $c_2 \in D$ with $v_D(c_2) \geq \frac{v_D(\pi)}{m}$ and a $z_2 \in \mathcal{O}_F$ such that $v_D(P(z_0^\sharp + c_1 z_1^\sharp + c_1 c_2 z_2^\sharp)) \geq 3 v_D(\pi)$. Note that $v_D(c_1 c_2 z_2^\sharp) \geq 2 \frac{v_D(\pi)}{m}$. We can see now that repeating this process yields a sequence $(s_n)_{n\geq 0}$ in D with $v_D(s_n - s_{n-1}) \geq n \frac{v_D(\pi)}{m}$ and $v_D(P(s_n)) \geq (n+1) v_D(\pi)$. Hence, this process yields a zero of P in the limit.

References

- [Ans] J. Anschütz. Lectures on the Fargues-Fontaine curve. https://janschuetz.perso.math.cnrs.fr/skripte/vorlesung_the_curve.pdf. Lecture notes.
- [Lur] J. Lurie. The Fargues-Fontaine curve. https://www.math.ias.edu/~lurie/205.html. Lecture notes.