The set |Y| and the untilts of Op

The following are notes for a talk I gave on 12.11.2025 in the seminar “The Farques—Fontaine curve
and p-adic Hodge theory”, see the program. The main reference for this talk was [Ans| §51, and I took
some extra inspiration from [Lur, Lectures 1-3, 17]. I added missing details to some of the arguments,

but none of this is original work. I hope you enjoy reading this. Comments are always welcome!

Daan van Sonsbeek

Throughout the talk, p is some prime and E is a finite extension of Qp. Denote by O the ring
of integers of E and let 7 € O be a uniformiser. Let g = #(Of/(7)). We will write
]Fq =0 E / (71' )

That which came before

We recall the important content of the previous talks. To any 7-complete Og-algebra A we
can associate its tilt
A’ = lim A/,
x—>x

i.e. the perfection of its reduction mod 7. It comes with a multiplicative map
#: A = A,

given by lifting any (..., x1,x0) € AP to a sequence (%o, ¥1,...) in A and taking the limit

lim; e f?l. Conversely, to any perfect [F;-algebra R we can associate its (ramified) Witt vectors
Wo, (R). There is an adjunction between taking Witt vectors and taking flats, whose counit is
given by Fontaine’s map

04: Wo,(A”) — A,

[ee] X (o) i
Y la)mt — Y aint,
i=0 i=0

Let C now be some complete, algebraically closed, non-archimedean field extension of E with

valuation v¢c. Let O¢c = {c € C | v(c) > 0} be its valuation ring. Then any element of O¢ can
§
1
principal and generated by some (non-unit) distinguished element d € Wp, (O%) This exhibits

Oc as a particular example of a perfectoid Or-algebra, which is an Og-algebra isomorphic to a

quotient Wy, (R) /I, where R is a perfect IF;-algebra and (W, (R), I) is a perfect prism. That
means, [ is an ideal generated by a distinguished element and Wp, (R) is I-adically complete.
We have seen that these distinguished elements are always of the form urm — [rg], where

u € Wo,(R)* and R is rp-adically complete.

be expressed in the form Y ;° ¢ 7t with ¢; € O, i.e. 00, is surjective. Additionally, ker 6¢.. is

Finally, Obc is a valuation ring with associated valuation v¢ o §. It is complete with respect to
this valuation and Frac(@bc) is algebraically closed. The central question of this talk is the
following:

If we instead fix some complete, algebraically closed, non-archimedean field F with ring of
integers O g, what can we say about the perfectoid O g-algebras that tilt to O p?
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The answer is in fact that any such perfectoid Of-algebra is again the ring of integers in a
complete, algebraically closed, non-archimedean field, either F or an extension of E. On top
of that, the valuation on these perfectoid Of-algebras is related to the one on Or by
composition with the sharp map.

Tilting and untilting perfectoid spaces
Let R be a perfect IF;-algebra.

Definition 1. An untilt of R is a pair (A, i), where A is a perfectoid Og-algebra and
i: A’ = R is an isomorphism. A morphism of untilts f: (A,i) — (B, ) is a morphism
f: A — B of Og-algebras with f> = j~1 o i. Denote the category of untilts of R by Untilts(R)

To determine the untilts of R, we first determine the tilts of the perfectoid algebra W(R)/I.

Lemma 2. Let (Wo, (R), I) be a perfect prism. Then (Wo, (R)/I )’ & R. Under this isomorphism,
Fontaine’s map 6 translates to the projection and the sharp map § translates to the reduction of the
Teichmiiller lift mod 1.

Proof. By a theorem of one of the previous talks, we establish an isomorphism

R —s (R/IR),
r+— (...,r"9mod IR, mod IR).

Now, we find the isomorphism
¢: R = (R/IR)" = (W, (R)/((m) +1))" = (Wo,(R)/I)",

given explicitly by ¢(r) = (..., [r/9],[r]), where the reductions are taken mod (7r) + I. The
second part of the lemma says that the diagram

2 § Wo, (R

% Wop (P)l \

(Wo, (R)/1) —Ls Wo, (Wo, (R)/1)") —— Wo, (R)/I

\_/

i

commutes. Since the left square obviously commutes, we check that the right triangle
commutes. It suffices to check this on Teichmiiller lifts [r] € Wo, (R). For these elements,
commutativity of the diagram means precisely that

(-, [F179), 1) = 1] mod I,

which is immediate from the construction of the sharp map. n

Remark. Lemma [2|tells us two things:



(1) A perfectoid Og-algebra A is an untilt of R if and only if it is of the form Wy, (R)/I for
some perfect prism (Wp, (R),I).

(2) If A is perfectoid, then (ker64, Wo, (A)) is a perfect prism and isomorphic to any other
perfect prism defining A. J

Let now (A, i) be an untilt of R. Consider Fontaine’s map 6,: Wo, (A”) — A and precompose
it with the isomorphism Wp, (i71): W@E(Ab) — Wo,(R). As (kerf, Wo, (A”)) is a perfect
prism, so is (Wp, (R), ker(64 c Wp, (i1))). We obtain the following identification.

Proposition 3. The above map induces a bijection

Untilts(R) /= — {I € Wp,(R) | (Wo,(R), I) perfect prism},
(A,i) — ker(64 o W(i™1)).

Proof. The above remark already shows that this map is surjective. We will show that it is
well-defined and injective. For well-definedness, let f: (A,i) — (B, ) be an isomorphism of
untilts. Then Wo, (f ”) = Wo, (j71) o Wo, (i) is an isomorphism of Op-algebras which maps
ker 6,4 onto ker 6. On the contrary, if (A,7) and (B, j) map to the same ideal I C Wy, (R).
Then the isomorphism W, (j ! o i) maps ker 64 onto ker 6. By two-out-of-three, the
induced map f: A — B on the cokernels is an isomorphism as well. As 65 is the counit of the
Witt vector-flat adjunction, it follows that W(f”) = W(j~" o i) hence by fully faithfulness of
Wo, that > =j1oi. [ ]

Remark. Note that, up to isomorphism, there is a unique positive characteristic untilt of R,
namely (R,idg). Under the identification in Proposition 3} it corresponds to the ideal (7).

Untilting certain valuation rings

Let now F/IF; be some complete, algebraically closed, non-archimedean field with valuation
vr. Let Op = {x € F | vp(x) > 0} be its associated valuation ring and

mp = {x € O | vp(x) > 0} its maximal ideal. Recall that we defined A, = W, (OF), as
well as |Y](g,e0) = {I C Ajns | (Ains, I) perfect prism} and Y| = |Y](g o) \ {(77)}. Here, the
idea is to interpret the elements of A, to be regular functions on |Y|[g .. By the results of
the previous sections, the elements I of [Y||y . are in one to one correspondence with the
(isomorphism classes of) untilts Aj,¢/I. Under this correspondence, the elements I of |Y| are
precisely the characteristic zero untilts. The main result of this talk is now the following:

Theorem 4. Let I € |Y|. Then A/ 1 is the valuation ring of a complete, algebraically closed,
non-archimedean field extension of E.

Note in particular that Ajn¢/I is a domain, so every I € |Y]( ) is a prime ideal. Theorem
says practically that every residue field carries a valuation. Before we prove Theorem [4}, we
prove some auxiliary results.

Recall that any ideal I € |Y| is generated by an element d = us — [dg], with u € A and
do € mp \ {0} (as Of is dp-complete if and only if dy € mg). Write D = A/ (d).

Lemma 5. (i) The Og-algebra D is r-complete.



(ii) The Og-algebra D is rt-torsion free.
(iii) The map

D — D,

x — xP

is sutjective.

Proof. (i) As Ay, is t-complete, the quotient D is derived m-complete. As d is distinguished,
D has bounded rt-torsion and is therefore also 7r-complete.

(ii) We have the following general fact for commutative rings R: if (7, s) is a regular
sequence in R and R is r-complete, then (s, r) is a regular sequence in R.

Note that, as dy # 0, the element d € A/ (1) = OF is not a zero divisor. Hence, (77, d)
is regular in Ay By the above general fact, it follows that (d, 7r) is regular as well. It
follows that 7t is not a zero divisor in A;,¢/(d), in other words that A;,¢/(d) is 7-torsion
free.

Finally, for completeness, we prove the general fact. We use that an element x is a zero
divisor if and only if the multiplication-by-x map is not an injection. Hence, we know
that the map R/(r) = R/(r) is an injection. From this, it follows that R/ (r?) = R/ (r?)
is an injection as well. After all, suppose a € R satisfies as € (r?). Then a € (r), say

a = br. Since r is not a zero divisor in R, it now follows from brs € (r?) that bs € (r), i.e.
b € (r) and a € (12). Repeating that argument, every map R/ (r") = R/(1") is an
injection and, passing to the limit, using that R is r-complete, the map R ~ R is injective.
Hence s is not a zero divisor in R. Now, applying the Nine Lemma to the diagram

0 0 0
|
0 R R R/(r) —— 0
s ] Lg
0 R N R/(r) —— 0
|

yields that the map R/ (s) uA R/ (s) is injective, i.e. 7 € R/(s) is not a zero divisor.

(iii) (Sketch) It suffices to prove the statement in case E = Q, and 7w = p. The general case
can be derived from this using the norm map. We also assume p # 2. The case p =2 is
resolved by changing all twos in the proof by threes.



We use the description of the sharp map from Lemma 2| It is clear that every element z*
admits the p-th root (z!/7)f, given that F is algebraically closed and Of is its valuation
ring. Therefore, it suffices to prove the statement up to multiplication with elements of
the form z* with z € Of. Given that dg = up mod d and D is p-complete, it is also
dg-complete. This means that we can write any x € D in the form x = }° x? : (dg)i,
where vr(x;) < vrp(dp). We may assume up to multiplication with sharps that xg # 0.
Then, multiplying with (xg)’1 (note, crucially, that this product is still an element of D),
we may assume that x € 1+ (p, mgr) Now, by explicit computation, we can find some

z € OF such that x = zf mod p?. This computation uses the fact that F is algebraically
closed. Multiplying with (z=1), we may assume that x € 1+ (p?), all whose elements
have a p-th root. |

Finally, we can prove Theorem [4

Proof of Theorem 4| Consider the multiplicative map ff: O — D. Recall that it sends any

x € OF to x* mod d. Note that his map only sends zero to zero. By Lemma , fis
surjective. After all, if y € D, then all y!/ 7' are in D, hence (.. .,y 17 mod 7,y mod 7)* = y.
Given that dé = u7t mod d, the map extends to a surjective, multiplicative map

i (’)p[dlo] — D[L]. Note that D[] is not the zero ring, as D is 7t-torsion free by.

We now deduce a lot of structure on D and D[1] from that on Op[dl—o]. For instance, D[1]is a

field as OF[%] = F is: any nonzero y = x* € D has inverse (x ). This means in particular

that D is a domain and D[] = Frac(D). Also, for any y = x* € D[], either x or x ! is in

OF, hence either y or y~! = (x~1)% is in D. Therefore, D is a valuation ring.

We will go one step further and explicitly determine the valuation on D. To do this, we show
that x% \ xé in D if and only if x1 | xo in OF. Since the ‘if’ part is clear, we prove the ‘only if’
part, so let x1,x, € O \ {0} be such that xg | xg and assume x1 t x; (the case were either
element is zero can immediately be observed to be true). Then, as Or is a valuation ring,

x1 | X2, say xp = tx1, where t € mp. This means that xg = tﬁxg. It follows by the assumptions
that t# is a unit. However, the sharp map induces an isomorphism O/ (dy) — D/ (7). Since t
is a nilpotent element on the left but tf is a unit on the right, we obtain a contradiction.

We now define the map

op: D — RU {co},

xt — op(x).

Note that this map is well-defined: if any two elements x, x" map to the same element in D
under f, then they must differ by a unit. Also note that vp(y) < vp(y’) if and only if y | /.
One can now show that vp in fact extends to a valuation on D[%] with valuation ring D.

Finally it remains to show that D[%] is an algebraically closed and complete field extension of
E. As 7 # 0in D and O[] = E, it is immediately clear that D[] is an E-algebra (i.e. a field
extension). Completeness with respect to the valuation topology induced by vp follows from
the fact that its valuation ring D is 7r-adically complete (by Lemma [B(i)) and 7 # 0 has



valuation vp (1) = vg(dg) > 0. To prove that D[1] is algebraically closed, we consider an
irreducible polynomial
P=T"4b,_1T" ' +-.. +by € D[T]

and show that it has zero. Given that D/(7r) = Of/(dy), let Q € Of[T] be a polynomial such

that P = Qin D/(7)[T] = Of/(dy)[T]. Then Q has a zero in Of (since the constant term of Q

is, up to negatives, the product of all zeroes), call it zy. It follows that P(T + zg) is irreducible

and must have constant term P (zg) divisible by 7. Let ¢c; € D be such that

#
vp(er) = vD(I;n(ZO)) > an(f). Such an element exists as vp (D[£]*) = vp(F*) and vp(F*) is

I3
divisible as F is algebraically closed. Define

P = cl_mP(zg +c1 7).

It is still irreducible and it therefore has coefficients in D, as the leading and constant
coefficient are in D. Repeating the above process, we can find z; € O with
vp(Py (z%)) > vp(7r), which means that ZJD(P(Zg + clzg)) > mup(c1) +vp(m) > 2vp (7). Note
that vD(clzﬁ) > UD?(”). Repeating this one more time yields a ¢, € D with vp(cp) > UD?(N) and
a zp € Of such that Z)D(P(Zg + clzg + cchzg)) > 3vp (7). Note that vD(c1c27:g) > ZUDT(”). We
can see now that repeating this process yields a sequence (s),>0 in D with

op(

vp(Sn — Sp_1) = ”TH) and vp(P(sy)) > (n+ 1)vp(m). Hence, this process yields a zero of P

in the limit. u
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