
Analytic Rings

Introduction

Having replaced topological abelian groups by condensed abelian groups, we introduced solid abelian groups
to obtain a notion of "complete" abelian groups. The corresponding category Solid ↪→ Cond(Ab) is (very)
well-behaved:

• Solid is an abelian subcategory, stable under limits, colimits, and extensions.

• Solid is generated by compact projective objects of the form Z[S]■.

• Solid is a reflective subcategory of Cond(Ab), i.e. the inclusion functor admits a left adjoint, given by the
solidification functor M 7→ M■.

• Solid is endowed with a unique symmetric monoidal structure, given by the solid tensor product ⊗■ for
which the solidification functor is symmetric monoidal.

• D(Solid) inherits a derived solidification functor C 7→ CL■ and a derived solid tensor product ⊗L■, which
are the left derived functors of the solidification functor and the solid tensor product, respectively.

We now want to develop a similar theory for suitable condensed rings and their categories of modules. For this,
we introduce the notion of (pre-)analytic rings.
Plan: • define (pre-)analytic rings and consider examples

• discuss categorical properties, in particular, the symmetric monoidal structure

• discuss functoriality properties

• revisit the "non-archimedean nature" of the solid theory (i.e. what about R)

A Sophisticated Definition

Recall: We defined the category of solid abelian groups in three steps:

• First, we declared what free solid abelian groups should look like,

• second, we defined solid abelian groups/complexes of solid abelian groups relative to our notion of free
solid abelian groups, and

• third, we used a formal Categorical Lemma to obtain Solid as this well-behaved subcategory of Cond(Ab).

We now formalise and simultaneously generalise this procedure to allow, more generally, suitable categories of
"condensed modules" instead of only condensed abelian groups. By this we mean the following.

Definition. Let R be a condensed ring. The category of R-modules in condensed abelian groups Modcond
R has

objects condensed abelian groups M such that M(S) is endowed with the structure of an R(S)-module for each
S, compatible with continuous maps, and morphisms M → N maps of condensed abelian groups such that
M(S)→ N(S) is R(S)-linear for each S. ⌟

Remark. • If R = Z, then (unsurprisingly) Modcond
Z = Cond(Ab).

• A condensed ring R is a monoid object with respect to the tensor product ⊗ of condensed abelian groups
and an R-module in condensed abelian groups is then a condensed abelian group M equipped with an
action map R⊗M→ M (subject to certain coherence conditions).

• If R is commutative, then for R-modules M, N in condensed abelian groups, the coequaliser of the diagram

M⊗ R⊗ N ⇒ M⊗ N

defines a tensor product M⊗R N and hence a symmetric monoidal structure on Modcond
R .
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• For a condensed ring R and R-modules M, N in condensed abelian groups, we define a complex of
condensed abelian groups RHomR(M, N)(S) = RHomR(M⊗Z[S], N). ⌟

Now, let us define an object, or rather a framework, combining the input of a choice of a condensed base ring and
a class of "free complete" modules. Furthermore, we pin down a technical condition describing "completeness" in
such a way, that, as output, this will produce a well-behaved subcategory of the category of modules in condensed
abelian groups over our chosen condensed base ring.

Definition. A pre-analytic ring A consists of

(i) a condensed ring A,

(ii) a functor A[−] : Proj→ Modcond
A taking finite disjoint unions to finite products, and

(iii) a natural transformation − → A[−].
We say that A is analytic if

(iv) for all complexes C• in Modcond
A , with each Ci of the form Ci =

⊕
T A[T], the natural map

RHomA(A[S], C•)→ RHomA(A[S], C•)

is an isomorphism. ⌟

Remark. There is an ∞-categorical version of this definition, which is used in various secondary literature. Most
of the results we will discuss below extend to this case (given the appropriate translations). ⌟

Let us try to explain the different moving pieces in more detail:

(i) A is our base ring, determining which (algebraic) module structures we consider, that is, which category of
modules in condensed abelian groups we consider.

(ii) A[−] : Proj→ Modcond
A determines our choice of "free complete" A-modules in condensed abelian groups.

We impose a sheaf condition to ensure that we can obtain from this a notion of "complete" A-modules.

(iii) For each S, the natural transformation yields a map S → A[S], which induces a "completion" map
A[S]→ A[S]. We want to think of A[S] as the "completion" of the free A-module A[S].

(iv) We use A[S] and its "completion" A[S] to test for "completeness", as we did in our definition of solid abelian
groups. Requiring the given isomorphisms pins down, in particular, A[S] as a genuine "complete" module.

We consider the following examples of pre-analytic rings.

a) The pre-analytic ring Z■ is given by

(i) the (discrete) condensed ring Z■ = Z,

(ii) the functor Z■[−] : Proj→ Modcond
Z = Cond(Ab), S 7→ Z[S]■ := lim←−Z[Si], and

(iii) the natural transformation, defined from S = lim←− Si → lim←−Z[Si] = Z■[S].

b) For a condensed ring R, the pre-analytic ring R is given by

(i) the condensed ring R = R,

(ii) the functor R[−] : Proj→ Modcond
R , S 7→ R[S], and

(iii) the natural transformation S→ R[S] = R[S].

c) The pre-analytic ring Zp,■ is given by

(i) the condensed ring Zp,■ = Zp,

(ii) the functor Zp,■[−] : Proj→ Modcond
Zp

, S 7→ (Zp[S])■
!
= lim←−Zp[Si], and

(iii) the natural transformation, defined from S→ Zp[S]→ Zp,■[S].
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d) For a discrete ring A, the pre-analytic ring (A, Z)■ is given by

(i) the (discrete) condensed ring (A, Z)■ = A,

(ii) the functor (A, Z)■[−] : Proj→ Modcond
A , S 7→ Z■[S]⊗■ A !

= Z■[S]⊗ A, and

(iii) the natural transformation S→ Z■[S]→ Z■[S]⊗■ A.

e) The pre-analytic ring (Qp, Zp)■ is given by

(i) the condensed ring (Qp, Zp)■ = Qp,

(ii) the functor (Qp, Zp)■[−] : Proj→ Modcond
Qp

, S 7→ Zp,■[S]⊗■
Zp

Qp
!
= Zp,■[S]⊗Zp Qp, and

(iii) the natural transformation S→ Zp,■[S]→ Zp,■[S]⊗■
Zp

Qp.

f) For a finitely generated Z-algebra A, the pre-analytic ring A■ is given by

(i) the (discrete) condensed ring A■ = A,

(ii) the functor A■[−] : Proj→ Modcond
A , S 7→ A■[S] = lim←− A[Si], and

(iii) the natural transformation, defined from S = lim←− Si → lim←− A[Si] = A■[S].

We can rephrase part of the assertions of the last talk as the observation that Z■ is an analytic ring. Thus, the
framework of analytic rings includes the notion of solid abelian groups. Using this, we can deduce the following.

Proposition. The pre-analytic rings R, Zp,■, (A, Z)■ and (Qp, Zp)■ are analytic.

Proof. Observe that for the pre-analytic ring R, R = R and therefore R[S] = R[S]. Since the natural comparison
map R[S]→ R[S], from which analyticity is defined, is an isomorphism (in fact, the identity), we conclude that R
is analytic.
We can prove the remaining three cases simultaneously. Let A denote any of the pre-analytic rings given and
abbreviate with A = A the underlying condensed ring. Let C• be a complex of A-modules in condensed abelian
groups with each Ci of the form Ci =

⊕
T A[T]. We have to show that for each extremally disconnected set S the

natural map
RHomA(A[S], C•)→ RHomA(A[S], C•)

is an isomorphism. We make the following claims:

(i) A[S] ∼= Z■[S]⊗■ A ∼= Z■[S]⊗L■ A. (ii) C• is in D(Solid).

Assuming these claims, we obtain the desired isomorphism as the composition of the following isomorphisms

RHomA(A[S], C•) ∼= RHomA(Z[S]⊗L A, C•)
∼= RHom(Z[S], C•)
∼= RHom(Z■[S], C•)

RHomA(A[S], C•) ∼= RHom(Z■[S]⊗L■ A, C•)

making use of the (derived) tensor-hom adjunction twice.
For (i), we observe that Z■[S]⊗L■ A ∼= Z■[S]⊗■ A. Indeed, since Z■[S] is a projective solid abelian group,
the derived solid tensor product Z■[S] ⊗L■ A is concentrated in degree 0. Thus, it suffices to show that
A[S] ∼= Z■[S]⊗■ A. For (A, Z)■ this holds by definition. Moreover, if we have obtained the isomorphism for the
pre-analytic ring Zp,■, we can deduce that

(Qp, Zp)■[S] = Zp,■[S]⊗■
Zp

Qp ∼= (Z■[S]⊗■ Zp)⊗■
Zp

Qp ∼= Z■[S]⊗■ Qp .
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Thus, it only remains to show that Zp,■[S] = (Zp[S])■ ∼= Z■[S]⊗■ Zp. Since Zp is a limit of solid abelian
groups, Zp

■ = Zp. As the solidification is (symmetric) monoidal for the tensor product, we find that

Z■[S]⊗■ Zp ∼= Z[S]■ ⊗■ Zp
■ ∼= (Z[S]⊗Zp)

■ ∼= (Zp[S])■ .

This shows that Z■[S]⊗■ Zp is the solidification of Zp[S].
For (ii), we observe that since Zp, Qp, and a discrete condensed ring A can all be realised as a combination of
limits and colimits of the solid abelian group Z, they are all solid abelian groups themselves. The same remains
true when applying Z■[S] ⊗L■ −. This shows that A[S] is solid in our cases of interests. In particular, the
complex C• lies in D(Solid) since its cohomologies are constructed from limits and colimits involving only maps
between solid abelian groups of the form

⊕
T A[T]. □

We will see f) for the special case A = Z[T] in the next talk. Moreover, there is an analogue of d) and e) for
general Huber pairs (A, A+). Later we will see this for A discrete.

Categories of A-modules

We now study the categories of modules in condensed abelian groups we obtain from analytic rings.

Theorem. Let A be an analytic ring.

(i) The full subcategory
Modcond

A ⊂ Modcond
A

of all A-modules M in condensed abelian groups such that for all extremally disconnected sets S, the map

HomA(A[S], M)→ HomA(A[S], M)

is an isomorphism, is an abelian subcategory closed under all limits, colimits, and extensions. The objects A[S] for S
extremally disconnected form a family of compact projective generators. The inclusion admits a left adjoint

Modcond
A → Modcond

A , M 7→ A⊗A M

that is the unique colimit-preserving extension of A[S]→ A[S]. If A is commutative, there is a unique symmetric
monoidal tensor product ⊗A on Modcond

A making the functor

Modcond
A → Modcond

A , M 7→ A⊗A M

symmetric monoidal.

(ii) The functor
D(Modcond

A )→ D(Modcond
A )

is fully faithful, and its essential image is closed under all limits and colimits given by those C• ∈ D(Modcond
A ) such

that for all extremally disconnected S, the map

RHomA(A[S], C•)→ RHomA(A[S], C•)

is an isomorphism; in that case, also the RHom’s agree. An object C• ∈ D(Modcond
A ) lies in D(Modcond

A ) if and only if
Hi(C•) are in Modcond

A . The inclusion D(Modcond
A ) ⊂ D(Modcond

A ) admits a left-adjoint

D(Modcond
A )→ D(Modcond

A ), C• 7→ A⊗L
A C•

that is the left derived functor of M 7→ M⊗A A. If A is commutative, there is a unique symmetric monoidal tensor
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product ⊗L
A on D(Modcond

A ) making the functor

D(Modcond
A )→ D(Modcond

A ), C• 7→ A⊗L
A C•

symmetric monoidal.

Remark. Contrary to our notation, in general cases it could happen that ⊗L
A is not the left derived functor of ⊗A.⌟

Proof. Almost all assertions follow immediately from the Categorical Lemma we established while developing
the theory of solid abelian groups. This lemma applies, since the notion of a pre-analytic ring yields the correct
setup, while the analyticity condition translates precisely into the necessary assumption.
It remains to prove that the RHom’s agree and to equip Modcond

A as well as D(Modcond
A ) with a symmetric monoidal

structure. This can be done as follows:

• Let C• be an object of D(Modcond
A ). If C• is bounded from below, then the isomorphism is precisely given as

requirement that A is analytic. The general case follows from the type of limit argument we have seen in
the proof of the Categorical Lemma (keyword: Postnikov limit).

• If A is commutative, we can define M⊗A N as the coequaliser of the diagram

M⊗A⊗ N ⇒ M⊗ N

with A-modules M, N in condensed abelian groups. This gives the a symmetric monoidal structure ⊗A on
Modcond

A and by taking left derived functors this induces a symmetric monoidal structure ⊗L
A on D(Modcond

A ).

• If A is commutative, we can define ⊗A as

M⊗A N = A⊗A (M⊗A N)

in analogy to the case of the solid tensor product of solid abelian groups. It requires some additional work to
show that this descends to the derived category. In particular, we cannot simply take the left derived functor
of ⊗A since it is in general not true that for extremally disconnected sets S, T the A-module A[S× T] is
concentrated in degree 0 (keyword: ⊗-ideal). □

Remark. • For an analytic ring A we let D(A) = D(Modcond
A ) denote the derived category of A-modules.

• For consistency, we will redefine our notation for solid abelian groups to match our new point of view using
the analytic ring Z■. Thus, we will write

Modcond
Z■

= Solid

for the category of solid abelian groups, we will denote by

Modcond
Z → Modcond

Z■
, M 7→ Z■ ⊗Z M

the solidification functor, and the symmetric monoidal tensor product ⊗■ is now denoted by ⊗Z■ . Similarly,
the derived solidification functor will be denoted by

D(Cond(Ab))→ D(Z■), C• 7→ Z■ ⊗L
Z C•

and the derived symmetric monoidal tensor product ⊗L■ is now denoted by ⊗L
Z■

. ⌟

Having defined our categories of interest, we turn to questions of functoriality. For this, we first define what types
of morphisms of pre-analytic and analytic rings we consider
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Definition. Let A and B be pre-analytic rings. A map of pre-analytic rings A → B is a map of condensed rings
A → B together with a natural transformation A[−]→ B[−] commuting with the natural transformations from
− and such that for each extremally disconnected set S the map A[S]→ B[S] is A-linear. ⌟

Definition. Let A and B be analytic rings. A map of analytic rings A → B is a map of condensed rings A → B
such that for each extremally disconnected set S the A-module B[S] lies in Modcond

A . ⌟

Consider a map of analytic rings A → B and let S be an extremally disconnected set. As the A-module B[S] is
contained in Modcond

A , we find that

Hom(S,B[S]) ∼= HomA(A[S],B[S]) ∼= HomA(A[S],B[S]) .

Hence the natural map S → B[S] induces, functorially, an A-linear map A[S] → B[S] which, by construction,
commutes with the natural transformations from −. In particular, a map of analytic rings induces a map of the
underlying pre-analytic rings.
The converse holds under a mild technical assumption.

Proposition. Let A and B be analytic rings. Let A → B by a map of the underlying pre-analytic rings. Assume that for
all extremally disconnected sets S with a map S → A, inducing a unique map A[S] → A[∗] in Modcond

A , and, from the
composite S→ A → B, a unique map B[S]→ B[∗] in Modcond

B , the diagram

A[S] A[∗]

B[S] B[∗]

commutes. Then A → B is a map of analytic rings.

Proof. Omitted (Appendix to Lecture VII). □

Our definition of maps of analytic rings is chosen such that the following functoriality properties become true.

Theorem. Let A and B be analytic rings and let A → B be a map of analytic rings.

(i) The composite functor

Modcond
A Modcond

B Modcond
B

B⊗A− B⊗B−

factors over Modcond
A , via a functor denoted

Modcond
A → Modcond

B , M 7→ B ⊗A M .

(ii) The composite functor

D(Modcond
A ) D(Modcond

B ) D(B)
B⊗L
A− B⊗L

B−

factors over D(A), via a the left derived functor

D(A)→ D(B), C• 7→ B ⊗L
A C•

of M 7→ M⊗A B.

Proof. Observe here that
B ⊗B (B ⊗A A[S]) = B ⊗B B[S] = B[S]

which, by assumption, lies in Modcond
A . As these generate, we conclude (i). Then (ii) follows from (i) as C• ∈ D(A) if

and only if Hi(C•) ∈ D(A). We finally conclude that the functor in (ii) is the left derived functor of M 7→ B ⊗A M
since it commutes with colimits and maps A[S] to B[S]. □
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Archimedean Theory

The theory of solid abelian groups is non-archimedean in the sense that R■ = Z■ ⊗R = 0. Thus, a naive
definition of pre-analytic ring R■ with underlying ring R and "free complete" modules R■[S] = (R[S])■, as we
do in the non-archimedean case, cannot work. Indeed,

R■[S] = (R[S])■ = (Z[S]⊗R)■ = Z[S]■ ⊗■ R■ = Z■[S]⊗■ R = 0

since R■ = 0. Thus, R■[S] = 0.
To avoid this problem, we could try to make use of the measure-theoretic perspective, which already part of our
development of the theory of solid abelian groups. More precisely, recall that

Z■[S] = Hom(C(S, Z), Z) =M(S, Z)

is the space of Z-valued measures on S. There is a similar interpretation for some of the other (pre-)analytic rings
we have considered so far. More precisely, we find that

Zp,■[S] =M(S, Zp) , A■[S] =M(S, A) , and (Qp, Zp)■[S] =Mb(S, Qp) ,

where A is a finitely generated Z-algebra andMb(S, Qp) is the space of bounded Qp-valued measures on S. Thus,
a reasonable candidate for the "free complete" R-modules in condensed abelian groups could be

Rℓ1 [S] =Mb(S, R) ,

that is, the space of bounded R-valued measures on S (with the topology dual to that of the Banach space C(S, R)).
This does not yield an analytic ring either. However, this time this is due to more subtle reasons, exemplified by
the existence of Ribe extensions implying the following.

Proposition. For any infinite extremally disconnected set S, one has

Ext1
R(Rℓ1 [S], Rℓ1 [S]) ̸= 0 .

This is not possible for an analytic ring. Indeed, suppose that A is analytic. Then we know that for all extremally
disconnected S the A-modules A[S] is projective. Thus, for i > 0 we conclude that

Exti
A(A[S],A[S]) = 0 .

The situation can be remedied, but this leads to the more involved notion of liquid R-vector spaces.
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